Способ многополяризационного уплотнения радиочастотного спектра в радиосистеме

Изобретение относится к области техники связи и может быть использовано в системах спутниковой и радиорелейной связи, а также в радиолиниях типа «точка-точка». Технический результат состоит в увеличении эффективности использования спектра радиосистемой, использующей одну поляризацию за счет одновременной передачи в точку приема q радиосигналов с одинаковой несущей частотой, но различными поляризациями. Для этого используют поляризационное уплотнение радиосистемы, при одновременной передаче радиосигналов с одной несущей частотой, но с различными поляризациями, при этом количество одновременно передаваемых сигналов q превышает 2 или более при использовании на передающей стороне трех и более передатчиков, излучающих радиосигналы посредством индивидуальных для каждого передатчика антенн с выбранными при проектировании радиосистемы поляризациями радиосигналов, отличающимися от поляризаций соседних радиосигналов не менее чем на 25-30 градусов и устанавливаемыми посредством необходимой для их получения ориентации в пространстве облучателей апертурных антенн или излучателей щелевых антенн каждого передатчика при работе в СВЧ диапазоне, либо необходимой ориентации антенных вибраторов при использовании более низкочастотных диапазонов и при этом на приемной стороне используются q приемников, антенны каждого из которых предназначены для приема радиосигналов одной из q поляризаций, с выделением на приемной стороне каждого из q передаваемых радиосигналов в результате подачи каждого из результирующих напряжений с выходов высокочастотных трактов каждого из q приемников с их индивидуальными коэффициентами передачи, зависящими от q, на соответствующие номерам этих радиосигналов входы каждого из q сумматоров, причем на выходе каждого сумматора выделяется один из q принимаемых сигналов. 4 ил.

 

Изобретение относится к системам радиосвязи, в частности к увеличению эффективности использования радиочастотного спектра.

Известны радиосистемы, в которых реализуется одновременная передача в общей полосе частот двух радиосигналов с взаимно ортогональными поляризациями, что соответствует увеличению эффективности использования радиоспектра в два раза по сравнению со случаем использования одной поляризации. В частном случае систем спутниковой связи с взаимно ортогональными поляризациями это увеличение может достигать четырех раз при наличии дополнительного пространственного разнесения двух зон обслуживания с использованием двух лучей диаграммы направленности бортовой антенны [1, 2]. При отсутствии указанного дополнительного пространственного разнесения зон обслуживания выигрыш в эффективности использования спектра радиосистемой за счет использования двух взаимно ортогональных поляризаций не превосходит двух. Недостатком систем спутниковой связи с взаимно ортогональными поляризациями является ограничение выигрыша в эффективности использования радиочастотного спектра величиной 2 при отсутствии пространственного разнесения зон обслуживания и величиной 4 при наличии такого разнесения.

В качестве прототипа данного изобретения может быть использован любой способ двухкратного (повторного) использования радиочастот, допускающий одновременную передачу информации на двух ортогональных поляризациях: линейных, круговых или эллиптических (например, [3]). В системах спутниковой связи из-за необходимости точного ориентирования и удержания в процессе эксплуатации плоскостей поляризации спутниковых и наземных антенн, а также из-за низких уровней достижимых развязок на частотах до 10 ГГц из-за эффекта Фарадея в атмосфере Земли применяется повторное использованием частот путем применения круговой или эллиптической поляризации радиосигналов. Повышение развязки двух одновременно передаваемых радиосигналов без существенного усложнения антенных систем достигается посредством ориентации большой оси эллипса поляризации приемной антенны перпендикулярно большой оси эллипса поляризации падающей волны противоположного направления вращения, что позволяет при примерно равных их коэффициентах эллиптичности (Кэ) сделать развязку тем больше, чем точнее ориентирована ось эллипса приемной антенны и чем ближе величины (Кэ) падающей волны и приемной антенны. Недостатком прототипа является отсутствие возможности осуществления более чем двукратного поляризационного уплотнения спектра радиосистемы.

Техническим результатом предлагаемого изобретения является увеличение эффективности использования спектра радиосистемой, использующей одну поляризацию, в q раз (q>2) за счет одновременной передачи в точку приема q нескольких радиосигналов с одинаковой несущей частотой, но различными поляризациями. Сущность способа заключается в обеспечении многополяризационного уплотнения радиосистемы с последующим разделением радиосигналов по поляризациям и их раздельной демодуляцией в точках приема.

Радиосистема с многополяризационным уплотнением работает следующим образом.

На передающей стороне радиосистемы устанавливают q передатчиков, излучающих радиосигналы посредством индивидуальных для каждого передатчика антенных устройств с различающимися поляризациями, назначенными при проектировании радиосистемы и реализуемыми без принципиальных затруднений посредством соответствующей ориентации в пространстве облучателей антенн каждого передатчика (в случае использования СВЧ диапазона) или требуемой ориентации вибраторов антенн в случае использования более низкочастотных диапазонов.

На фиг. 1 приведен пример реализации сдвига поляризаций двух антенн на угол Δ для апертурных антенн СВЧ с облучателями и рефлектором. Раскрывы облучателей двух антенн условно обозначены прямоугольниками.

На фиг. 2 приведен пример реализации сдвига поляризаций двух антенн типа диполь на угол Δ для антенн более низкочастотных диапазонов.

Каждой из q выбранных при проектировании поляризаций (а также передатчику и приемнику, работающим на этой поляризации) присваивают определенный номер i в пределах от 1 до q.

Переданные q радиосигналов , , с одинаковой несущей частотой и разными поляризациями (1, 2, 3 … q соответственно) поступают на входы q приемников, каждый из которых предназначен для приема радиосигналов одной из q поляризаций.

На вход приемника с антенной i-й поляризации поступают как полезный радиосигнал с этой же поляризацией, так и помеховые радиосигналы с остальными поляризациями, причем напряжение радиосигнала с j-й поляризацией, отличающейся от i-й поляризации на угол Δ ij=(φi-φj), где φi и φj - углы, характеризующие поляризации i-го и j-го радиосигналов, ослабляется антенной i-го приемника пропорционально cos(φi-φj). Таким образом, на вход ВЧ тракта приемника радиосигнала i-й поляризации поступает результирующее суммарное входное воздействие:

, j≠i,

где (φi-φj) - угол между плоскостями поляризации полезного i-го радиосигнала и помехового j-го радиосигналов.

Разделение радиосигналов на приеме происходит в результате подачи результирующих напряжений с выходов линейных высокочастотных трактов каждого i-го приемника, пропорциональных и в соответствии с формулой (1) являющихся линейными комбинациями всех q переданнных радиосигналов, на один из q входов блока обработки совокупности результирующих напряжений , содержащего q сумматоров с q входами, причем на выходе сумматора 1 получают радиосигнал , на выходе второго сумматора получают радиосигнал , на выходе сумматора 3 получают радиосигнал и радиосигнал Sq(t) на выходе сумматора q.

При этом на i-й вход j-го сумматора поступает результирующее напряжение с выхода высокочастотного тракта i-го приемника , предварительно пропущенное через линейное устройство с коэффициентом передачи aij, определяемым в результате решения системы уравнений, описывающих данную радиосистему, и зависящим от величины q, порядкового номера полезного радиосигнала i, для которого рассчитывается данный коэффициент, и порядкового номера радиосигнала j, создающего помеху i-му полезному радиосигналу.

Пример нахождения коэффициентов передачи aij для случая q=4 приведен ниже.

После разделения переданных радиосигналов , , каждый из них поступает для демодуляции на вход индивидуального демодулятора.

Обобщенная структурная схема реализации предлагаемого метода многополяризационного уплотнения радиочастотного спектра в радиосистеме приведена на фиг. 3, где приняты следующие обозначения: 1, 2, 3, 4 - передатчики радиосигналов с 1-й, 2-й, 3-й q-й поляризациями соответственно;

5, 6, 7, 8 - линейные части высокочастотных трактов приемников радиосигналов с 1-й, 2-й, 3-й и q-й поляризациями соответственно;

9 - устройство обработки совокупности результирующих воздействий от линейных частей высокочастотных трактов приемников радиосигналов каждой поляризации на входы устройства обработки совокупности результирующих воздействий ;

10, 11, 12, 13 - демодуляторы радиосигналов с 1-й, 2-й, 3-й и q-й поляризациями.

Утолщенные линии обозначают передачу полезных сигналов каждого передатчика на линейные части высокочастотных трактов приемника радиосигналов той же поляризации, что и у этого передатчика. Тонкие линии обозначают мешающее воздействие сигналов каждого передатчика радиосигналов на линейные части высокочастотных трактов приемника сигналов иной поляризации, чем у данного передатчика. Различные поляризации радиосигналов символически обозначены в кружках.

Величины представляют собой линейные комбинации всех q сигналов, которые имеют вид:

где (φi-φj) - угол между плоскостями поляризации i-гo и j-го сигналов.

Совокупность q выражений вида (1) для каждого значения i образует систему q линейных уравнений с q неизвестными, решение которой позволяет получить выражения для нахождения всех Si(t) по известным , получаемым посредством ответвления напряжений с выхода линейной части ВЧ тракта каждого приемника и подачи их на соответствующие входы устройства обработки совокупности результирующих воздействий .

Из (1) следует, что решения системы уравнений для заданного значения q имеют вид [4]:

где aik - коэффициенты, зависящие от минимального угла между соседними плоскостями поляризации и значений i и k. Эти коэффициенты могут быть как положительными, так и отрицательными.

Функции устройства обработки совокупности радиосигналов состоят в технической реализации операций получения всех принимаемых сигналов Si(t), описываемых выражениями (2), которые для каждого сигнала Si(t) осуществляются посредством i-го сумматора с q входами, на j-й вход которого через линейные устройства с коэффициентом передачи aij поступает напряжение .

Структурная схема всего устройства обработки совокупности радиосигналов приведена на фиг. 4, где приняты следующие обозначения:

14, 15, 16, … 17 - линейные устройства с коэффициентами передачи a11, а12, а13 … a1q соответственно;

18, 19, 20, … 21 - линейные устройства с коэффициентами передачи а21, а22, а23 … a2q соответственно;

22, 23, 24, … 25 - линейные устройства с коэффициентами передачи а31, а32, а33 … a3q соответственно;

26, 27, 28, … 29 - линейные устройства с коэффициентами передачи aql, aq2, aq3 … aq4 соответственно;

30, 31, 32, … 33 - сумматоры, на выходах которых формируются сигналы S1(t), S2(t), S3(t), … Sq(t), переданные с 1-й, 2-й, 3-й … q-й поляризациями соответственно.

Напряжения радиосигналов , выделенных устройством обработки совокупности радиосигналов , направляются на входы индивидуальных демодуляторов.

Предлагаемый способ допускает как равномерное угловое разнесение используемых поляризаций радиосигналов (Δ=const), так и неравномерное, пример которого приведен ниже. Теоретического ограничения степени поляризационного уплотнения (количества одновременно передаваемых радиосигналов с одной несущей частотой) нет, но реальная максимальная степень этого уплотнения в большинстве случаев составляет ориентировочно 5 … 6 раз. В этих случаях при равномерном угловом разнесении угол между соседними поляризациями составит 180:5 … 6=(36…30) градусов.

При одинаковых углах между соседними плоскостями поляризации система q уравнений вида (1) имеет решения, в частности, для q=4 (т.е. при Δ=45 град.) и для q=5 (т.е. при Δ=36 град.). Решение системы уравнений вида (1) представляет собой сумму формул вида (2), определяющих сигналы на выходе устройства обработки совокупности радиосигналов . Получены выражения для этих решений. В случае q=3 и Δ=60 град. решения нет, но есть решение для случая q=3 и Δ=45 град., для поляризаций 0, 45 и 90 град., в случае неравномерного углового разнесения используемых поляризаций (0, 45 и 90 град.)

В качестве примера приведем решение для случае q=4, Δ=45 град. При этом формулы для , , и имеют вид:

Из (3) следует, что в рассматриваемом случае коэффициенты aij имеют следующие значения: a11=3311.3; а12=-2341.1; а13=2341.1; а21=3311.3 и т.д.

Таким образом, предлагаемый способ увеличения эффективности использования радиочастотного спектра реализуем по меньшей мере при q=4 и 5 при одинаковой разности Δ=φii-1 между соседними плоскостями поляризации, а также при q=3 и неодинаковой разности Δ=φii-1 между соседними плоскостями поляризации (0, 45 и 90 град.). Это означает возможность повышения указанной эффективности по сравнению с использованием лишь одной поляризации в 3, 4, 5 и более раз соответственно.

Литература

[1]. Электромагнитная совместимость систем спутниковой связи. Под ред. Л.Я. Кантор, В.В. Ноздрин. - М. НИИР, 2009. - 280 с.

[2]. А. Киселев, В. Бобков, М. Ефимов. Поляризационное уплотнение - перспективы внедрения, "Коннект", 2014, №4.

[3]. Бережной С.Н. Способ повторного использования частот в системах спутниковой связи корреляцией параметров поляризационных эллипсов (Патент RU 2216855); Н04В 7\00 - Системы радиосвязи, т.е. системы с использованием излучения (Н04В 10/00, Н04В 15/00).

[4]. И.Н. Бронштейн, К.А. Семендяев. Справочник по математике для инженеров и учащихся втузов. Изд. "Наука". Главная редакция физико-математической литературы. 1980, стр. 250.

Способ многополяризационного уплотнения радиочастотного спектра в радиосистеме, заключающийся в использовании поляризационного уплотнения радиосистемы, достигаемого при одновременной передаче радиосигналов с одной несущей частотой, но с различными поляризациями, отличающийся тем, что передают одновременно q радиосигналов в количестве два и более при использовании на передающей стороне трех и более передатчиков, излучающих радиосигналы посредством индивидуальных для каждого передатчика антенн с выбранными при проектировании радиосистемы поляризациями радиосигналов, при этом облучатели апертурных антенн или излучатели щелевых антенн каждого передатчика при работе в СВЧ диапазоне либо антенные вибраторы при использовании более низкочастотных диапазонов устанавливают так, чтобы между используемыми поляризациями было не менее чем 25-30 градусов и при этом на приемной стороне устанавливают q приемников, антенны каждого из которых предназначены для приема радиосигналов одной из q поляризаций, а также выделяют на приемной стороне каждый из q передаваемых радиосигналов путем подачи результирующих напряжений с выходов высокочастотных трактов каждого из q приемников с их индивидуальными коэффициентами передачи aij, определяемыми в результате решения системы уравнений, описывающих данную радиосистему, и зависящими от величины q, порядкового номера i полезного радиосигнала, для которого рассчитывается данный коэффициент, и порядкового номера j радиосигнала, создающего помеху i-му полезному радиосигналу, и передают на соответствующие номерам этих радиосигналов входы каждого из q сумматоров, причем на выходе каждого сумматора выделяют один из q принимаемых радиосигналов с последующей демодуляцией в индивидуальном демодуляторе.



 

Похожие патенты:

Изобретение относится к области техники связи и может быть использовано в многолучевых спутниковых системах доступа к информационным ресурсам. Техническим результатом изобретения является распределение мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам при ограничениях на нижние пороги скоростей передачи информации в пользовательских соглашениях.

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения. Технический результат состоит в повышении помехоустойчивости приема данных при мешающем воздействии сосредоточенных по спектру синусоидальных и флуктуационных помех.

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения. Технический результат состоит в повышении помехоустойчивости приема данных при мешающем воздействии сосредоточенных по спектру синусоидальных и флуктуационных помех.

Изобретение относится к способу связи между клиентским устройством и беспроводным периферийным устройством в системе связи. Технический результат заключается в обеспечении связи между клиентским устройством и периферийным устройством и ее защиты.

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении надежности управления группой спутников.

Изобретение относится к технике связи и может использоваться для демодуляции сигнала, несущего сообщение, переданное наземным радиомаяком. Технический результат состоит в повышении точности определения местоположения аварийных радиомаяков спутниковой системой.

Изобретение относится к области радиосвязи. Техническим результатом является повышение надежности работы и качества передаваемой информации по радиоканалам в условиях воздействия на передачу радиопомех.
Изобретение относится к области дистанционного радиоуправления системами сигнализации или системами контроля доступа с многоканальной двусторонней радиосвязью на переключаемых узкополосных ЧМ-радиоканалах.

Изобретение относится к радиотехнике и используется для определения координат и передачи аварийного сообщения о ситуации «человек за бортом» через автоматическую идентификационную систему (АИС) на ближайшие суда и станции приема сигналов АИС.

Изобретение относится к электросвязи, в частности к устройствам оценки информационного обмена в системах связи. Техническим результатом предлагаемого устройства является повышение точности оценки КПД передачи информации за счет учета при ее определении воздействия на систему связи помех путем дополнительной оценки параметра помехоустойчивости и уточнения с ее помощью оценки КПД передачи информации.

Изобретение относится к технике связи и может использоваться в автоматической адаптивной пакетной ВЧ радиосвязи. Технический результат состоит в расширении функциональных возможностей системы за счет введения операций: обхода выведенного из строя сегмента подсистемы наземной связи с помощью трансляции по ВЧ радиоканалу «Земля-Земля» от ближайшей к обрыву подсистемы наземной связи доступной ВЧ наземной станции по ВЧ радиоканалам «Земля-Земля» к другой доступной ВЧ наземной станции, находящейся на другой стороне обрыва, дублирования функций планирования связи и динамического управления ресурсами связи центра управления ВЧ системы обмена пакетными данными в ведущих зональных ВЧ наземных станциях. Для передачи срочной информации используют трансляцию по ВЧ радиоканалам «Воздух-Земля» со всех доступных для выбранной ВЧ бортовой станции ВЧ наземных станций, причем для ретрансляции срочной информации используют соответствующие ВЧ наземные станции и радиоканалы «Земля-Земля», а также доступные ВЧ бортовые станции и соответствующие радиоканалы «Воздух-Воздух». 2 н. и 2 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к системам радиосвязи и может быть использовано при выборе частот излучения, которые обеспечивают электромагнитную совместимость (ЭМС) и малый уровень помех. Технический результат состоит в расширении функциональных возможностей, а именно в выборе рабочих частот в динамике не только с учетом минимальных частотных разносов, как в прототипе, но и с учетом наличия комбинационных составляющих и текущей помеховой обстановки, что обеспечивает планирование связи. Это достигается за счет введения в устройство узлов: вычислителя, блока расчета комбинационных составляющих, сканирующего приемника с антенной, синтезатора частот, аналого-цифрового преобразователя, блока хранения планов связи с внешним входом, магистральной (межблочной) шины со связями. 1ил.

Предлагаемое устройство относится к области радиосвязи и может быть использовано для передачи сигналов управления с диспетчерского пункта на системы жизнеобеспечения (теплоснабжения, водоснабжения, газоснабжения, электроснабжения, канализации, вентиляции и т.д.) сложных объектов, а также для сбора информации с указанных систем для централизованного контроля и управления технологическими процессами на них.Технической задачей изобретения является повышение помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам.Устройство дистанционного мониторинга систем жизнеобеспечения сложных объектов содержит диспетчерский пункт и системы жизнеобеспечения сложных объектов.Диспетчерский пункт (каждая система жизнеобеспечения сложных объектов) содержит источник 1.1 (1.2) аналоговых сообщений, модулятор 2.1 (2.2) с двойным видом модуляции, генератор 3.1 (3.2) несущей частоты, амплитудный модулятор 4.1 (4.2), фазовый манипулятор 5.1 (5.2), источник 6.1 (6.2) дискретных сообщений, передатчик 7.1 (7.2), первый гетеродин 8.1 (8.2), первый смеситель 9.1 (9.2), усилитель 10.1 (10.2) первой промежуточной частоты, первый усилитель 11.1 (11.2) мощности, дуплексер 12.1 (12.2), приемопередающую антенну 13.1 (13.2), приемник 14.1 (14.2), второй усилитель 5.1 (15.2) мощности, второй гетеродин 16.1 (16.2), второй смеситель 17.1 (17.2), усилитель 18.1 (18.2) второй промежуточной частоты, амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), перемножитель 21.1 (21.2), полосовой фильтр 22.1 (22.2), фазовый детектор 23.1 (23.2), блок 24.1 регистрации и анализа (исполнительный блок 24.2), усилитель 25.1 (25.2) суммарной частоты, амплитудный детектор 26.1 (26.2) и ключ 27.1 (27.2). 3 ил.

Изобретение относится к области слежения за полетом космических аппаратов (КА) и может быть использовано в командно-измерительной системе (КИС) спутниковой связи. Способ включает передачу с наземного сегмента управления КИС по линии «Земля - КА» сигналов, содержащих команды управления КА. На входе приемного устройства КА оценивают отношение сигнал/шум принятого сигнала. Это отношение переводят в отношение энергии бита к спектральной плотности мощности шума и далее рассчитывают вероятность ошибки на бит информации. Рассчитанное её значение включают в телеметрический кадр, который передают по линии «Земля - КА» в наземный комплекс управления. Там сравнивают рассчитанное и требуемое значения вероятности. Если первое меньше второго, то увеличивают мощность передающего наземного устройства до обеспечения требуемой вероятности ошибки на бит информации. Технический результат изобретения состоит в предотвращении сбоев при выдаче командно-программной информации и обеспечении непрерывных сеансов связи с космическим аппаратом на всех этапах его жизненного цикла. 1 ил.

Изобретение относится к крупномасштабным сетям и узлам радиодоступа диапазона ДКМВ и может быть использовано для создания национальных или континентальных сетей радиодоступа со сплошной зоной обслуживания. Технический результат состоит в увеличении радиуса зоны обслуживания территориального узла радиодоступа до 3000 км, исключении замираний сигнала. Для этого сеть ДКМВ содержит многоканальные стационарные узлы территориального радиодоступа, состоящие из разнесенных приемных и передающих радиоцентров, программно-определяемые абонентские радиотерминалы, связанные с узлами сети адаптивными линиями радиодоступа, стационарные узлы зенитного радиодоступа с радиусом зоны обслуживания до 500 км, основной и запасной центры управления сетью, причем соседние стационарные опорные узлы территориального радиодоступа расположены в вершинах смежных равносторонних сферических треугольников с длиной стороны не более 3000 км по дуге большого круга и имеют зону радиодоступа радиусом до 3000 км каждый; адаптивные линии абонентского радиодоступа из сплошной зоны к стационарным опорным узлам территориального радиодоступа, магистральные линии межузловой связи организованы с применением ионосферной моды 1F2, программно-определяемые сетевые абонентские радиотерминалы содержат встроенный навигационный приемник для определения местоположения, а узел содержит в своем составе комплекты приемных и передающих антенн радиодоступа, а также программно-аппаратные комплексы зондирования ионосферы, определения пространственных параметров радиолиний и определения рабочих диапазонов частот, обеспечивающих ведение сеансов модой 1F2. 5 ил.

Изобретение относится к спутниковой системе связи, в частности к системе управления космическим аппаратом (КА ) и предназначено для исключения искажения команд управления, передаваемых с наземного комплекса управления (НКУ) на борт КА, вызванного узкополосной помехой. Для обеспечения технического результата в бортовую аппаратуру командно-телеметрической системы КА введены узел вычитания, формирователь компенсирующего сигнала, блок определения модуля, блок синхронизации, блок оперативной памяти и блок формирователя командного сигнала. В случае появления помехи принятая команда, искаженная помехой, также записывается в блок оперативной памяти, в блоке определения модуля, в паузе командного сигнала, выявляется наличие сигнала помехи по ненулевому значению напряжения на выходе блока определения модуля. В результате этого с выхода блока определения модуля поступает сигнал, по которому запрещается передача искаженного командного сигнала, записанного в блок оперативной памяти, в дешифратор команд. 4 ил.

Изобретение относится к технике связи и может использоваться в системах космической связи. Технический результат состоит в повышении надежности связи и точности определения координат радиобуев. Для этого станция приёма информации от аварийных радиобуев космической системы поиска и спасания включает единый комплекс обработки и выдачи информации, содержащий аппаратно-программные средства определения координат и вектора скорости радиобуя и управления наведением антенн, выполненных полноповоротными, на среднеорбитальные ИСЗ спутниковых навигационных систем, а также средства отображения информации. Комплекс обработки и выдачи информации подключён к средствам обработки информации упомянутого информационно-измерительного комплекса через коммутатор-маршрутизатор и сеть типа Ethernet и обеспечивает управление оборудованием данного комплекса. Способ управления наведением антенн предусматривает наведение антенн станции (системы) приёма и обработки информации в течение заданного временного интервала на созвездие из среднеорбитальных космических аппаратов с наибольшей площадью зоны обслуживания, в которой обеспечивается заданная точность определения координат радиобуев. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к авиационной радиосвязи и может быть использовано для организации декаметровой (ДКМ) радиосвязи в каналах «борт летательного аппарата (ЛА) - наземный опорный радиоцентр (ОпРЦ)» на незакрепленных частотах без частотного планирования. Технический результат заключается в обеспечении автоматической бесперебойной ДКМ-радиосвязи с надежностью информационного обмена 0,95-0,99, крипто- и помехозащищенностями каналов связи и экономией частотного ресурса. Для этого в радиоканал «борт ЛА - наземный ОпРЦ» вводится технология ионосферного мониторинга (ИМ), реализуемая с помощью линейно-частотно-модулированных (ЛЧМ) сигналов и позволяющая определять радиопрогностические параметры ионосферного канала, включая основной параметр - оптимальную рабочую частоту (ОРЧ) в реальном масштабе времени. При этом наземные ОпРЦ оснащаются аппаратно-программными комплексами ионосферного мониторинга, а борт ЛА - четырехканальным приемником-анализатором ЛЧМ-сигналов, способным одновременно принимать и анализировать сигналы от четырех пространственно-разнесенных наземных ОпРЦ. В результате обеспечивается адаптация по частоте и пространству, что дает возможность работы на одной ОРЧ, определенной для данного времени для одного из четырех ОпРЦ, наиболее подходящего по условиям распространения ДКМ-радиоволн и помеховой обстановке. При деградации параметров работающего канала ниже допустимых значений передача управления каналом «борт ЛА - наземный ОпРЦ» новому ОпРЦ осуществляется по сети магистральных линий, связывающих между собой все ОпРЦ и выполняющих роль так называемого «обратного канала». Каждый ЛА, выходящий в эфир, использует свободную частоту на основе собственного анализа занятости этой частоты по данным ИМ, тем самым исключается создание взаимных помех. 2 ил.

Изобретение относится к области радиосвязи и предназначено для использования в радиосетях широкого применения, в частности радиосетях адаптивной КВ-радиосвязи. Технический результат заключается в организации системы коротковолновой радиосвязи, состоящей из N взаимосвязанных через радиоэфир узлов связи, автоматическом управлении работой коммутатора приемного центра с помощью вычислителя, выборе вероятностно-оптимальной частоты с помощью сканирующего по частоте одного из n приемных трактов, управляемого вычислителем, для адаптации системы. Изобретение заключается в том, что в каждый приемный центр системы коротковолновой радиосвязи введен вычислитель, соединенный двухсторонними связями с базой данных с внешним входом, формирователем сигналов управления всех приемных трактов, многотрактовой аппаратурой приема и обработки КВ сигналов с приемными антеннами и с блоком управления и отображения, k входов вычислителя соединены с k выходами многотрактовой аппаратуры приема и обработки КВ сигналов с приемными антеннами, а его k выходов - с k входами соответствующего формирователя сигналов управления всех приемных трактов, (k+1)-й выход вычислителя соединен с управляющим входом коммутатора приемного тракта. 1 ил.

Изобретение относится к области систем мобильной связи с использованием системы со многими входами и многими выходами, представляющей собой передачу с пространственным мультиплексированием, где различные потоки данных параллельно передаются с передающих антенн, и обеспечивает устранение конкуренции между потоками данных. В системе беспроводной связи передающее устройство (1) передает для каждого из множества потоков данных блок данных с присоединенной информацией идентификации блока данных, которая не конфликтует между потоками данных, принимающее устройство (2) выполняет синтез повторной передачи для уже принятого блока данных и повторно переданного блока данных, к которым присоединена одинаковая информация идентификации блока данных, на основании информации идентификации блока данных, присоединенной к принятому блоку данных. Кроме того, в случае если количество передаваемых потоков между передающим устройством (1) и принимающим устройством (2) варьируется (уменьшается), свойство согласования блока данных, которое является целью синтеза повторной передачи, может быть сохранено и связь может быть продолжена в нормальном режиме. 1 з.п. ф-лы, 32 ил.
Наверх