Способ и система управления группой, по меньшей мере, из двух спутников, предназначенных для обеспечения обслуживания на геостационарной орбите, предоставляющих упомянутое обслуживание на негеостационарной орбите

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении надежности управления группой спутников. Для этого предложен способ управления группой, по меньшей мере, из двух спутников, предназначенных для обеспечения обслуживания на геостационарной орбите, предоставляющих упомянутое обслуживание на негеостационарной орбите, при котором средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту спутника (S1, S2), деактивируются, когда Солнце может повредить их, а средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту другого спутника (S1, S2) группы активируются, когда это необходимо для непрерывности обслуживания. 2 н. и 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к способу управления группой, по меньшей мере, из двух спутников, предназначенных для обеспечения обслуживания на геостационарной орбите, предоставляющих упомянутое обслуживание на негеостационарной орбите.

Эксплуатационная готовность обслуживания, предоставляемого космической системой, содержащей множество спутников, является строгим и дорогостоящим критерием.

Хорошо известны спутники, предназначенные для использования на геостационарных орбитах, содержащие так называемые холодные поверхности, снабженные теплообменниками, давая возможность ограничить нагревание спутника. Однако эти геостационарные спутники непригодны для предоставления обслуживания, требующего негеостационарной орбиты.

Одной целью изобретения является преодоление вышеописанных проблем.

В соответствии с одним аспектом изобретения, предложен способ управления группой, по меньшей мере, из двух спутников, предназначенных для обеспечения обслуживания на геостационарной орбите, предоставляющих упомянутое обслуживание на негеостационарной орбите, при осуществлении которого средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту одного спутника, деактивируют, когда Солнце может повредить их, а средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту другого спутника группы, активируют, когда это необходимо для непрерывности обслуживания.

Таким образом, посредством изобретения можно использовать геостационарные спутники известной конструкции на негеостационарных орбитах, что делает возможной экономию весьма значительных затрат на разработку.

В соответствии с одним вариантом осуществления, управление положением спутника в пространстве проводят с учетом мгновенного положения Солнца, так что положение спутника в пространстве временно изменяют, когда его может повредить Солнце.

Таким образом, Солнце не повреждает спутник, а его полезная нагрузка (полезные нагрузки) может быть использована в течение большего времени.

В одном варианте осуществления, упомянутое управление положением в пространстве содержит непрерывное пилотирование по углу рыскания или «управление по рысканию», так что положение спутника в пространстве непрерывно изменяют, когда Солнце может повредить его, а потом, когда Солнце больше не создает риск повреждения спутника, управление положением в пространстве еще раз изменяют, так что ориентация спутника снова возвращается к нормальной ориентации на целевую географическую область, в пределах которой надлежит предоставлять упомянутое обслуживание.

Следовательно, такие временные изменения режима управления положением в пространстве обеспечивают более длительное использование функций спутника на его орбите, вследствие чего, например, полезная нагрузка спутника будет работать на протяжении большего участка орбиты, что увеличивает эксплуатационную готовность.

В соответствии с одним вариантом осуществления, упомянутое обслуживание, предоставляемое группой спутников, является формированием изображения географической области Земли, при котором средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту спутника, активируют со сдвигом по времени между упомянутыми спутниками в связи с характерной для спутника длительностью фотосъемки.

Таким образом, чтобы получить более частые изображения, фотосъемку начинают на одном спутнике, потом фотосъемку того же региона начинают на следующем спутнике, когда предыдущий спутник уже сохранил участок изображения.

В одном варианте осуществления, если группа содержит два спутника, фотосъемку географической области одним спутником начинают, когда другой спутник завершил половину фотосъемки упомянутой географической области.

Таким образом, изображения получаются с удвоенной частотой.

В соответствии с одним вариантом осуществления, когда Солнце не создает риск повреждения упомянутых спутников, управление упомянутыми спутниками осуществляют так, что в каждое мгновение обслуживание, предоставляемое для географической области, предоставляется лишь одним из упомянутых спутников.

Таким образом, появляется возможность использовать орбиты с меньшим наклоном, а значит - те, которых запускаемому космическому аппарату проще достичь, что также делает возможной экономию затрат на запуски спутников.

В соответствии с еще одним аспектом изобретения, также предложена система для управления группой, по меньшей мере, из двух спутников, предназначенных для предоставления обслуживания на геостационарной орбите, предоставляющих упомянутое обслуживание на негеостационарной орбите, отличающаяся тем, что она содержит средство управления, подходящее для деактивации средств, обуславливающих рабочие параметры упомянутого обслуживания и установленных на борту одного спутника, когда Солнце может повредить их, и активации средств, обуславливающих рабочие параметры упомянутого обслуживания и установленных на борту другого спутника группы, когда это необходимо для непрерывности обслуживания.

Изобретение станет понятнее при изучении нескольких вариантов осуществления, описываемых в качестве неограничительных примеров и иллюстрируемых на прилагаемых чертежах, при этом:

фиг.1 схематически иллюстрирует систему и способ управления в соответствии с предшествующим уровнем техники; и

фиг.2 схематически иллюстрирует систему и способ управления в соответствии с одним аспектом изобретения.

На разных чертежах элементы, которые имеют идентичные условные обозначения, являются одинаковыми.

Фиг.1 схематически иллюстрирует обычный способ управления группой, по меньшей мере, из двух спутников, в этом случае - спутников S1 и S2, предназначенных для предоставления обслуживания на негеостационарной орбите.

Без учета ограничений, накладываемых Солнцем, управление группой спутников обычно осуществляется симметрично, как изображено на фиг.1, поскольку спутники предназначены для работы на запланированной орбите.

В представленном примере, данные первого спутника S1 могут ретранслироваться вторым спутником S2 (оба они принадлежат группе спутников), когда они находятся соответственно в положениях P1 и P2 орбиты, на которой первый спутник S1 и второй спутник S2 одновременно обеспечивают охват географической области ZG, для которой следует предоставить обслуживание.

Как вариант, можно также разделить область ZG на две, например - Z1 и Z2, границу которых можно изменять и которые соответствуют горизонту видимости, достигаемому одним из спутников, и осуществить постепенный переход, во время которого, например, первый спутник S1 в положении P11 обеспечивает охват подобласти Z1, а второй спутник S2 в положении P22 обеспечивает охват подобласти Z2, что позволяет спутникам работать на большем участке орбиты.

Возможно наличие спутниковых приборов или полезных нагрузок, которые разработаны для некоторой заданной орбиты, и было бы желательно повторно использовать их на другой орбите. В частности, это распространенное решение в случае спутников, изначально разработанных для геостационарной орбиты, потому что на этой орбите имеется много спутников и вариантов обслуживания.

Когда есть желание использовать спутники, предназначенные для использования на геостационарной орбите, на негеостационарной орбите, например, на наклонной орбите, имеющей больший эксцентриситет, то накладываются различные ограничения, делающие полезные нагрузки спутников неработоспособными в некоторые моменты времени и/или на некоторых участках орбиты. Одним из этих важных ограничений является относительное положение Солнца - по отношению к полезным нагрузкам спутников.

Данное изобретение делает возможным повторное использование без адаптации или с весьма незначительными адаптациями полезных нагрузок, например полезных нагрузок для наблюдения, изначально предназначенных для геостационарной орбиты, таким образом, что их можно использовать для негеостационарной орбиты, например наклонной орбиты с большим эксцентриситетом.

В отличие от геостационарной орбиты, другие орбиты, например наклонные орбиты с большим эксцентриситетом, явно отличаются весьма разными условиями экспонирования солнечным освещением. В случае геостационарной орбиты, Солнце движется вокруг спутников, оставаясь вблизи одной и той же плоскости, тогда как на негеостационарной орбите, такой как наклонная орбита с большим эксцентриситетом, видимое движение Солнца, хотя и медленное, позволяет ему успешно освещать большинство поверхностей спутников, которые обычно несовместимы с радиаторами охлаждения полезной нагрузки, предназначенной для геостационарной орбиты, которые никогда не должны подвергаться освещению Солнцем.

Данное изобретение делает возможным повторное использование спутников, предназначенных для геостационарных орбит, на негеостационарных орбитах, например в случае флота или группировки спутников, с использованием, в качестве примера обслуживания, передачи функции формирования изображения, конкретным признаком которой является то, что она несимметрична, как изображено в примере согласно фиг.2.

Известны передачи обслуживания, такого как осуществление формирования изображения, от одного спутника к другому из группы спутников, которые обычно являются симметричными, поскольку они определяются только как функция относительной геометрии наблюдения, при этом последовательные спутники обслуживают одну и ту же функцию в этой области. Вместе с тем, на негеостационарной орбите, например на наклонной эксцентрической орбите, положение Солнца, являющееся изменяющимся, нарушает симметрию и поэтому в некоторые моменты времени будет препятствовать работе полезной нагрузки на одном из спутников, но не на другом, потому что он не находится в том же орбитальном положении.

Тогда способ заключается в принятии решения о моменте передачи этой функции наблюдения в момент, когда солнечное освещение находится в точке прерывания работы полезной нагрузки активного спутника, предоставляющего обслуживание.

По выбору, активный спутник тогда может осуществлять изменение положения в пространстве во избежание воздействия Солнца на элементы спутника, например полезные нагрузки, которые могут быть повреждены Солнцем, такие как теплообменники.

Когда удовлетворяется одно из нижеследующих условий, управление положением спутников в пространстве предусматривает отказ от непрерывного пилотирования по углу рыскания или «управления по рысканию» и возврат к предыдущему режиму управления. Этот отказ имеет место, когда положение в пространстве, являющееся результатом управления по рысканию, становится несовместимым с работой элемента спутника (например, в случае радиоантенны, создающей формируемый луч, для которой область не должна быть симметричной, пилотирование по углу рыскания постепенно вносит поворот области охвата на земле, которая, в конечном счете, больше не будет иметь правильную форму, или даже в случае полезной нагрузки для наблюдения, при которой сканирование или последующая обработка больше не сможет компенсировать чрезмерный поворот цели из-за пилотирования по углу рыскания). Этот отказ также имеет место, когда спутник, о котором идет речь, покидает участок орбиты, откуда видна целевая область.

Этот принцип временного изменения пилотирования спутника в момент, когда появляется солнечное освещение, для которого ранее описаны критерии отключения, представляет собой новый способ, воплощающий отход от обычных соображений, связанных с геометрией наблюдения. Он дает возможность повторно использовать полезную нагрузку спутника для предоставления обслуживания, например обслуживания, связанного с наблюдением, изначально предназначенного для геостационарной орбиты, осуществляемого без модификации и поэтому недорогого, для негеостационарной орбиты, такой как орбита с большим эксцентриситетом.

Все соответствующие законы орбитальной механики в данном случае являются детерминистскими, иными словами, решение в связи с планированием передачи обслуживания от одного спутника к другому не должно приниматься в реальном времени, его можно совершенно спокойно рассчитывать и планировать заранее.

По выбору, незначительные модификации, такие, как адаптация противосолнечных заслонок вокруг теплообменников, позволяют полезной нагрузке работать дольше в начале низкого воздействия солнца и тем самым улучшить рабочие параметры, если это потребуется.

Фиг.2 схематически иллюстрирует примерный способ управления в соответствии с одним аспектом изобретения для группы, по меньшей мере, из двух спутников, в этом случае, двух спутников S1 и S2, предназначенных для обеспечения обслуживания на геостационарной орбите, используемых на негеостационарной орбите.

Область ZE орбиты спутников S1, S2 соответствует участку орбиты, на котором солнечное освещение может повредить аппаратуру спутника.

Команда передачи обслуживания с первого спутника S1 на второй спутник S2 отдается как раз перед тем, как спутник S1 заходит в область ZE орбиты, где солнечное освещение может повредить аппаратуру спутника. Тогда управление положением в пространстве первого спутника S1 осуществляется непрерывно с учетом мгновенного положения Солнца, так что положение спутника в пространстве временно изменяется, когда Солнце может повредить спутник. Затем, когда риска повреждения спутника S1 Солнцем больше нет, управление положением в пространстве еще раз изменяется, так что ориентация спутника S1 возвращается к нормальной ориентации на целевую географическую область ZG, в которой надлежит предоставить обслуживание. Таким образом, область ZE орбиты, в которой солнечное освещение может повредить компонент аппаратуры спутника, сокращается.

Управление положением в пространстве может содержать временное переключение на непрерывное пилотирование по углу рыскания, так что положение спутника в пространстве непрерывно изменяется, когда Солнце может повредить спутник. Отказ от этого режима временного пилотирования по углу рыскания происходит сразу же, как только удовлетворяется одно из двух вышеуказанных условий. Кроме того, можно также повысить эксплуатационную готовность системы спутников на негеостационарных орбитах посредством фазового сдвига моментов фотосъемки двумя спутниками S1, S2, которые имеют в виду одну и ту же географическую область ZG.

Когда обслуживание, предоставляемое группой спутников, представляет собой обслуживание, связанное с формированием изображения для географической области ZG Земли, средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту спутников S1 и S2, активируются со сдвигом по времени между упомянутыми спутниками, связанным с длительностью фотосъемки спутником.

Например, фотосъемка географической области ZG вторым спутником S2 начинается, когда первый спутник S1 завершил половину фотосъемки упомянутой географической области ZG.

Таким образом, ужесточается еще один критерий эксплуатационной готовности обслуживания, связанного с наблюдением, проводимого при расположении спутника на наклонной орбите с большим эксцентриситетом, который заключается в наиболее быстром по времени возможном повторении получаемых изображений.

Например, клиенту может понадобиться получение изображения всей целевой географической области ZG каждые десять минут, что накладывает требования непосредственно на размеры прибора для фотосъемки, как правило, со сканированием, в том смысле, что этот десятиминутный период накладывает ограничения на весь механизм сканирования целевой области и последующую скорость передачи данных изображения.

Изменение с десяти минут до пяти минут требует наложения ограничения на механизм сканирования, чтобы оно стало вдвое быстрее, а также вдвое более чувствительных соответствующих датчиков изображения (потому что они оказываются освященными лишь в течение половины прежнего времени), при этом от всей цифровой цепи радиопередачи требуется удвоение ее скорости передачи данных.

Посредством ранее описанного сдвига во времени, вносящего разделение в средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту спутников, создается возможность удвоения частоты наблюдения в течение значительной части времени наблюдения без необходимости наложения вышеописанных строгих ограничений.

Используется тот факт, что при обслуживании, связанном с наблюдением и проводимом при расположении спутников на наклонной орбите с большим эксцентриситетом, часто доступно некоторое количество спутников, два из которых обычно активны к моменту передачи функции формирования изображения. Тот факт, что одновременно доступны два спутника, делает возможным двукратное получение изображения целевой области.

Это предусматривает сдвиг операции формирования изображения таким образом, что начало получения изображения вторым спутником S2 происходит точно в средней точке цикла формирования изображения первого спутника S1: например, если цикл формирования изображения длится десять минут, первый спутник S1 начинает формирование изображения целевой области в момент t (и заканчивает в момент t+10 мин), а второй спутник S2 начинает свое формирование изображения в момент t+5 мин. Результатом является частота повторения изображения через каждые пять минут, даже несмотря на то, что оба прибора способны обеспечить частоту повторения изображения лишь через каждые десять минут.

Эта удвоенная частота не обязательно является постоянно доступной (если только количество спутников не является достаточно большим), но остается весьма выгодной и, в зависимости, от уставок орбитальных параметров - может оказаться действительной в течение значительной части времени наблюдения даже в случае минимума - двух спутников S1 and S2.

Кроме того, когда Солнце не создает риск повреждения спутников, можно также управлять спутниками таким образом, что в каждый момент времени обслуживание, предоставляемое для географической области, предоставляется лишь одним из упомянутых спутников.

Кроме того, как вариант, данные первого спутника S1 могут ретранслироваться вторым спутником S2, когда они находятся в положениях Р11 и Р22, соответственно, если географическая область ZG, которую надо охватить обслуживанием, разделена на две секции Z1 и Z2 (каждая из которых - вследствие этого - меньше, чем вся область ZG), причем первая секция назначается первому спутнику S1, а вторая назначается второму спутнику S2.

Разделение географической области ZG на секции имеет особенность, заключающуюся в том, что первый участок Z1, назначенный первому спутнику S1, предпочтительно состоит из элемента целевой области ZG, который находится на стороне, куда ориентирован первый спутник S1 (участка площади поверхности, являющегося «ближайшим» к первому спутнику SI).

Другой участок Z2 составляет дополнение первого участка Z1 в целевой области ZG, и законы орбитальной механики предписывают, чтобы этот второй участок Z2 был в силу симметрии лучше расположенным для наблюдения посредством второго спутника S2.

Как пояснялось ранее, осуществляется постепенное переключение, т.е. области Z1 и Z2 непрерывно изменяются во времени.

Таким образом, что касается критического момента изменения спутника, предоставляющего обслуживание, например обслуживание, связанное с наблюдением, возможно смягчение ограничения видимости целевой области ZG за счет обеспечения для каждого спутника целевой области (т.е. участка Z1 или Z2), временно меньшей, в конкретный момент времени, когда наблюдение становится затруднительным, поскольку дальнейшее идеальное размещение спутников оказывается больше невозможным: первый из них готов покинуть участок орбиты, на котором ему задавали целевую область, а второй как раз начинает вхождение на тот участок, еще не имея возможности наблюдать всю область ZG. Кроме того, оба последовательных спутника S1 и S2, не нарушая непрерывность обслуживания, могут отходить друг от друга, и это означает, например, что суммарное количество спутников, необходимых для непрерывности наблюдения, можно уменьшить, а еще в качестве альтернативы можно выбирать орбиты, на которых условия наблюдения целевой области ZG являются менее жесткими и которые при использовании обычного способа не смогли бы обеспечить непрерывность обслуживания, тогда как за счет предлагаемых вышеописанных мер непрерывность обслуживания возможна по всей целевой области ZG.

Спутники S1 и S2, которые ранее должны были следовать друг за другом, находясь в положениях Р1 и Р2, соответственно, теперь могут отодвигаться дальше друг от друга до тех пор, пока не окажутся в положениях P11 и P22 соответственно.

Кроме того, секции Z1 и Z2 могут изменяться со временем в течение этой передачи функции формирования изображения от одного спутника S1 к другому S2.

Что касается группировки спутников, включающей в себя более двух спутников, то можно аналогичным образом определить разделение целевой области ZG на три или более секций в связи с тем, сколько спутников входят в зону видимости или находятся в точке выхода из зоны видимости целевой области ZG.

Результат этого способа заключается в том, что продлевается «полезный» участок орбиты, обеспечивая более раннее начало обслуживания спутником, такого как фотосъемка, чем в случае, если бы понадобилось ждать достижения полной видимости целевой области ZG, и симметрично окончания обслуживания спутником, расположенным дальше на орбите: следовательно, в целом, достигается лучший охват целевой области ZG.

Таким образом, охват для заданной орбиты увеличивается, но в определяющей фазе полета можно, в отличие от вышеизложенного, использовать это для «смягчения требований» к орбите, иными словами, для использования категорий орбит, которые ранее оказывались бы неподходящими. Таким образом, появляется возможность использовать орбиты с меньшим наклоном, которых вследствие этого проще достичь запускаемому космическому аппарату и которые также обеспечивают экономию затрат на запуски спутников.

1. Способ управления группой, по меньшей мере, из двух спутников (S1, S2), предназначенных для обеспечения обслуживания на геостационарной орбите, предоставляющих упомянутое обслуживание на негеостационарной орбите, при котором средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту спутника (S1, S2), деактивируются, когда Солнце может повредить их, а средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту другого спутника (S1, S2) группы, активируются, когда это необходимо для непрерывности обслуживания.

2. Способ по п.1, в котором положением спутника (S1, S2) в пространстве управляют с учетом мгновенного положения Солнца, так что положение спутника в пространстве временно изменяют, когда его может повредить Солнце.

3. Способ по п.2, в котором упомянутое управление положением в пространстве содержит непрерывное пилотирование по углу рыскания, так что положение спутника (S1, S2) в пространстве непрерывно изменяют, когда Солнце может повредить его, а потом, когда Солнце больше не создает риск повреждения спутника (S1, S2), управление положением в пространстве еще раз изменяют, так что ориентация спутника (S1, S2) возвращается к нормальной ориентации на целевую географическую область (ZG), в пределах которой надлежит предоставлять упомянутое обслуживание.

4. Способ по п.1, в котором упомянутое обслуживание, предоставляемое группой спутников (S1, S2), является формированием изображения географической области (ZG) Земли, при котором средства, обуславливающие рабочие параметры упомянутого обслуживания и установленные на борту одного спутника (S1, S2), активируют со сдвигом по времени между упомянутыми спутниками (S1, S2) в связи с длительностью фотосъемки спутника (S1, S2).

5. Способ по п.4, в котором, если упомянутая группа содержит два спутника, фотосъемку географической области (ZG) одним спутником начинают, когда другой спутник выполнил половину фотосъемки упомянутой географической области (ZG).

6. Способ по п.1, в котором, когда Солнце не создает риск повреждения упомянутых спутников (S1, S2), упомянутыми спутниками (S1, S2) управляют так, что в каждое мгновение обслуживание, предоставляемое для географической области, предоставляется лишь одним из упомянутых спутников (S1, S2).

7. Система спутников, содержащая группу, по меньшей мере, из двух спутников (S1, S2), предназначенных для обеспечения обслуживания на геостационарной орбите, предоставляющих упомянутое обслуживание на негеостационарной орбите, отличающаяся тем, что она содержит средство управления, пригодное для деактивации средств, обуславливающих рабочие параметры упомянутого обслуживания и установленных на борту спутника (S1, S2), когда Солнце может повредить их, и для активации средств, обуславливающих рабочие параметры упомянутого обслуживания и установленных на борту другого спутника (S1, S2) группы, когда это необходимо для непрерывности обслуживания.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться для демодуляции сигнала, несущего сообщение, переданное наземным радиомаяком. Технический результат состоит в повышении точности определения местоположения аварийных радиомаяков спутниковой системой.

Изобретение относится к области радиосвязи. Техническим результатом является повышение надежности работы и качества передаваемой информации по радиоканалам в условиях воздействия на передачу радиопомех.
Изобретение относится к области дистанционного радиоуправления системами сигнализации или системами контроля доступа с многоканальной двусторонней радиосвязью на переключаемых узкополосных ЧМ-радиоканалах.

Изобретение относится к радиотехнике и используется для определения координат и передачи аварийного сообщения о ситуации «человек за бортом» через автоматическую идентификационную систему (АИС) на ближайшие суда и станции приема сигналов АИС.

Изобретение относится к электросвязи, в частности к устройствам оценки информационного обмена в системах связи. Техническим результатом предлагаемого устройства является повышение точности оценки КПД передачи информации за счет учета при ее определении воздействия на систему связи помех путем дополнительной оценки параметра помехоустойчивости и уточнения с ее помощью оценки КПД передачи информации.

Изобретение относится к области радиосвязи, а именно к системам сеансовой связи, обеспечивающим выполнение высоких требований к достоверности передачи сообщений.

Изобретение относится к системам беспроводной связи. Технический результат - увеличение объема представляемой информации, относящейся к обратной связи.

Изобретение относится к командным радиолиниям управления командно-измерительной системы (КИС). Технический результат заключается в увеличении объема передаваемой информации командной радиолинией КИС при совмещении в радиоканале «борт-земля» (обратныйный канал) двух независимых потоков передачи разнотиповой информации.

Изобретение относится к области радиотехники и может быть использовано для передачи и приема информации. Технический результат состоит в обеспечении незаметной для вероятного противника радиосвязи.

Изобретение относится к радиотехнике и может быть использовано в системах контроля источников радиоизлучений, в частности при радиомониторинге сигналов геостационарных спутниковых систем связи (ССС).

Изобретение относится к способу связи между клиентским устройством и беспроводным периферийным устройством в системе связи. Технический результат заключается в обеспечении связи между клиентским устройством и периферийным устройством и ее защиты. Периферийное устройство выполнено с возможностью осуществления связи с хост-устройством, используя пакеты первого типа, передаваемые между периферийным устройством и хост-устройством в соответствии с первым режимом связи, причем хост-устройство выполнено с возможностью осуществления связи с клиентским устройством, используя пакеты второго типа, передаваемые между хост-устройством и клиентским устройством в соответствии со вторым режимом связи. Способ содержит этапы, на которых в хост-устройстве: инкапсулируют контент первых пакетов первого типа в первые пакеты второго типа и передают их клиентскому устройству; восстанавливают контент вторых пакетов первого типа, предназначенных периферийному устройству и содержащихся во вторых пакетах второго типа, принятых от клиентского устройства, и направляют для передачи хост-устройством периферийному устройству. При этом в хост-устройстве на уровне приложений обеспечивают по меньшей мере одну дополнительную функцию, связанную с защитой связи. 3 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения. Технический результат состоит в повышении помехоустойчивости приема данных при мешающем воздействии сосредоточенных по спектру синусоидальных и флуктуационных помех. Для этого в способе декаметровой радиосвязи с высокоскоростной передачей данных на передающей стороне скорость информационного потока данных от источника сообщений увеличивают в два раза, а двоичную последовательность, поступающую после кодирования на вход последовательно-параллельного преобразователя с информационной скоростью, дополнительно распределяют на дополнительные его выходы таким образом, что формируемые на дополнительных выходах двоичные элементы соответствующих дополнительных канальных последовательностей следуют параллельно и синхронно с двоичными элементами канальных последовательностей, формируемых на его выходах с канальной скоростью в дополнительном блоке канальных манипуляторов. 3 ил.

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения. Технический результат состоит в повышении помехоустойчивости приема данных при мешающем воздействии сосредоточенных по спектру синусоидальных и флуктуационных помех. Для этого в системе декаметровой радиосвязи с высокоскоростной передачей данных введены в передающий комплекс последовательно соединенные дополнительный блок канальных манипуляторов дополнительное радиопередающее устройство и дополнительная передающая антенна, а в приемный комплекс введены дополнительный блок N канальных демодуляторов и 2N блоков когерентного сложения сигналов (БКС), каждый БКС содержит два узла фазирования, каждый из которых содержит последовательно соединенные канальный фильтр, нормирующий усилитель, первый перемножитель, измерительный фильтр и второй перемножитель. 3 ил., 1 табл.

Изобретение относится к области техники связи и может быть использовано в многолучевых спутниковых системах доступа к информационным ресурсам. Техническим результатом изобретения является распределение мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам при ограничениях на нижние пороги скоростей передачи информации в пользовательских соглашениях. Распределение мощности бортовых передатчиков позволяет разным пользователям получать информационный ресурс с разной скоростью в зависимости от их потребности. Изобретение раскрывает способ распределения мощности бортовых передатчиков между сигналами многолучевой спутниковой системы доступа к информационным ресурсам, в котором поиск оптимальных мощностей сигналов выполняется по алгоритму динамического распределения мощности. 1 ил.

Изобретение относится к области техники связи и может быть использовано в системах спутниковой и радиорелейной связи, а также в радиолиниях типа «точка-точка». Технический результат состоит в увеличении эффективности использования спектра радиосистемой, использующей одну поляризацию за счет одновременной передачи в точку приема q радиосигналов с одинаковой несущей частотой, но различными поляризациями. Для этого используют поляризационное уплотнение радиосистемы, при одновременной передаче радиосигналов с одной несущей частотой, но с различными поляризациями, при этом количество одновременно передаваемых сигналов q превышает 2 или более при использовании на передающей стороне трех и более передатчиков, излучающих радиосигналы посредством индивидуальных для каждого передатчика антенн с выбранными при проектировании радиосистемы поляризациями радиосигналов, отличающимися от поляризаций соседних радиосигналов не менее чем на 25-30 градусов и устанавливаемыми посредством необходимой для их получения ориентации в пространстве облучателей апертурных антенн или излучателей щелевых антенн каждого передатчика при работе в СВЧ диапазоне, либо необходимой ориентации антенных вибраторов при использовании более низкочастотных диапазонов и при этом на приемной стороне используются q приемников, антенны каждого из которых предназначены для приема радиосигналов одной из q поляризаций, с выделением на приемной стороне каждого из q передаваемых радиосигналов в результате подачи каждого из результирующих напряжений с выходов высокочастотных трактов каждого из q приемников с их индивидуальными коэффициентами передачи, зависящими от q, на соответствующие номерам этих радиосигналов входы каждого из q сумматоров, причем на выходе каждого сумматора выделяется один из q принимаемых сигналов. 4 ил.

Изобретение относится к технике связи и может использоваться в автоматической адаптивной пакетной ВЧ радиосвязи. Технический результат состоит в расширении функциональных возможностей системы за счет введения операций: обхода выведенного из строя сегмента подсистемы наземной связи с помощью трансляции по ВЧ радиоканалу «Земля-Земля» от ближайшей к обрыву подсистемы наземной связи доступной ВЧ наземной станции по ВЧ радиоканалам «Земля-Земля» к другой доступной ВЧ наземной станции, находящейся на другой стороне обрыва, дублирования функций планирования связи и динамического управления ресурсами связи центра управления ВЧ системы обмена пакетными данными в ведущих зональных ВЧ наземных станциях. Для передачи срочной информации используют трансляцию по ВЧ радиоканалам «Воздух-Земля» со всех доступных для выбранной ВЧ бортовой станции ВЧ наземных станций, причем для ретрансляции срочной информации используют соответствующие ВЧ наземные станции и радиоканалы «Земля-Земля», а также доступные ВЧ бортовые станции и соответствующие радиоканалы «Воздух-Воздух». 2 н. и 2 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к системам радиосвязи и может быть использовано при выборе частот излучения, которые обеспечивают электромагнитную совместимость (ЭМС) и малый уровень помех. Технический результат состоит в расширении функциональных возможностей, а именно в выборе рабочих частот в динамике не только с учетом минимальных частотных разносов, как в прототипе, но и с учетом наличия комбинационных составляющих и текущей помеховой обстановки, что обеспечивает планирование связи. Это достигается за счет введения в устройство узлов: вычислителя, блока расчета комбинационных составляющих, сканирующего приемника с антенной, синтезатора частот, аналого-цифрового преобразователя, блока хранения планов связи с внешним входом, магистральной (межблочной) шины со связями. 1ил.

Предлагаемое устройство относится к области радиосвязи и может быть использовано для передачи сигналов управления с диспетчерского пункта на системы жизнеобеспечения (теплоснабжения, водоснабжения, газоснабжения, электроснабжения, канализации, вентиляции и т.д.) сложных объектов, а также для сбора информации с указанных систем для централизованного контроля и управления технологическими процессами на них.Технической задачей изобретения является повышение помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам.Устройство дистанционного мониторинга систем жизнеобеспечения сложных объектов содержит диспетчерский пункт и системы жизнеобеспечения сложных объектов.Диспетчерский пункт (каждая система жизнеобеспечения сложных объектов) содержит источник 1.1 (1.2) аналоговых сообщений, модулятор 2.1 (2.2) с двойным видом модуляции, генератор 3.1 (3.2) несущей частоты, амплитудный модулятор 4.1 (4.2), фазовый манипулятор 5.1 (5.2), источник 6.1 (6.2) дискретных сообщений, передатчик 7.1 (7.2), первый гетеродин 8.1 (8.2), первый смеситель 9.1 (9.2), усилитель 10.1 (10.2) первой промежуточной частоты, первый усилитель 11.1 (11.2) мощности, дуплексер 12.1 (12.2), приемопередающую антенну 13.1 (13.2), приемник 14.1 (14.2), второй усилитель 5.1 (15.2) мощности, второй гетеродин 16.1 (16.2), второй смеситель 17.1 (17.2), усилитель 18.1 (18.2) второй промежуточной частоты, амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), перемножитель 21.1 (21.2), полосовой фильтр 22.1 (22.2), фазовый детектор 23.1 (23.2), блок 24.1 регистрации и анализа (исполнительный блок 24.2), усилитель 25.1 (25.2) суммарной частоты, амплитудный детектор 26.1 (26.2) и ключ 27.1 (27.2). 3 ил.

Изобретение относится к области слежения за полетом космических аппаратов (КА) и может быть использовано в командно-измерительной системе (КИС) спутниковой связи. Способ включает передачу с наземного сегмента управления КИС по линии «Земля - КА» сигналов, содержащих команды управления КА. На входе приемного устройства КА оценивают отношение сигнал/шум принятого сигнала. Это отношение переводят в отношение энергии бита к спектральной плотности мощности шума и далее рассчитывают вероятность ошибки на бит информации. Рассчитанное её значение включают в телеметрический кадр, который передают по линии «Земля - КА» в наземный комплекс управления. Там сравнивают рассчитанное и требуемое значения вероятности. Если первое меньше второго, то увеличивают мощность передающего наземного устройства до обеспечения требуемой вероятности ошибки на бит информации. Технический результат изобретения состоит в предотвращении сбоев при выдаче командно-программной информации и обеспечении непрерывных сеансов связи с космическим аппаратом на всех этапах его жизненного цикла. 1 ил.

Изобретение относится к крупномасштабным сетям и узлам радиодоступа диапазона ДКМВ и может быть использовано для создания национальных или континентальных сетей радиодоступа со сплошной зоной обслуживания. Технический результат состоит в увеличении радиуса зоны обслуживания территориального узла радиодоступа до 3000 км, исключении замираний сигнала. Для этого сеть ДКМВ содержит многоканальные стационарные узлы территориального радиодоступа, состоящие из разнесенных приемных и передающих радиоцентров, программно-определяемые абонентские радиотерминалы, связанные с узлами сети адаптивными линиями радиодоступа, стационарные узлы зенитного радиодоступа с радиусом зоны обслуживания до 500 км, основной и запасной центры управления сетью, причем соседние стационарные опорные узлы территориального радиодоступа расположены в вершинах смежных равносторонних сферических треугольников с длиной стороны не более 3000 км по дуге большого круга и имеют зону радиодоступа радиусом до 3000 км каждый; адаптивные линии абонентского радиодоступа из сплошной зоны к стационарным опорным узлам территориального радиодоступа, магистральные линии межузловой связи организованы с применением ионосферной моды 1F2, программно-определяемые сетевые абонентские радиотерминалы содержат встроенный навигационный приемник для определения местоположения, а узел содержит в своем составе комплекты приемных и передающих антенн радиодоступа, а также программно-аппаратные комплексы зондирования ионосферы, определения пространственных параметров радиолиний и определения рабочих диапазонов частот, обеспечивающих ведение сеансов модой 1F2. 5 ил.
Наверх