Литейный сплав на основе интерметаллида ni3al и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей газотурбинных двигателей авиационной промышленности, например сопловых и рабочих лопаток, блоков сопловых лопаток, сегментов камеры сгорания, створок. Сплав на основе интерметаллида Ni3Al содержит, мас. %: Al 8,1-8,8, Сr 3,5-4,5, Mo 5,0-6,5, W 2,7-3,5, Ti 0,5-1,5, Та 2,0-5,0, Re 1,0-2,0, Со 4,0-7,0, С 0,015-0,08, La 0,015-0,15, Hf 0,3-0,6, Pr 0,01-0,2, Ni и неизбежные примеси - остальное. Сплав характеризуется повышенной стойкостью к малоцикловой усталости при осевой нагрузке на базе 1×104 циклов на гладких образцах (σ0,1) при 750°С, повышенной стойкостью к сульфидно-оксидной коррозии при 850°С, а также высоким ресурсом работы до температуры 1250°С и кратковременно до 1300°С. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе интерметаллида Ni3Al, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей газотурбинных двигателей авиационной промышленности, например сопловых и рабочих лопаток, блоков сопловых лопаток, сегментов камеры сгорания, створок и т.д.

Для нового поколения авиационных и ракетных двигателей необходимы материалы, которые можно эксплуатировать при высоких температурах в агрессивных средах. Разработка таких материалов в современном авиастроении, особенно материалов на основе интерметаллидов, обладающих высокой жаростойкостью, термической стабильностью и надежностью эксплуатации при высоких температурах, является актуальной проблемой.

Известен сплав на основе интерметаллида Ni3Al, имеющий следующий химический состав, мас. %:

Al 11,5
Mo 1,0
Со 11,5
Hf 1,7
Zr 0,05
В 0,1
Nb 0,5
Ni остальное

(Патент США №4613368, B22F 3/00, опубл. 23.09.1986).

Недостатком этого сплава является его неработоспособность при температурах выше 800°С.

Известен сплав на основе интерметаллида Ni3Al, имеющий следующий химический состав, мас. %:

Al 8,2-8,6
Сr 4,8-5,2
Mo 2,5-3,0
W 2,0-2,4
Ti 1,2-1,5
Та 1,2-1,6
Re 0,05-1,2
С 0,001-0,02
La 0,015-0,3
Zr 0,05-0,5
Ni остальное

(РФ №2308499 C1, C22C 9/03, опубл. 20.10.2007).

Сплав имеет хорошую кратковременную прочность, но недостаточно высокую жаропрочность при 1200°С на базе 100 часов.

Известен сплав на основе интерметаллида Ni3Аl, содержащий следующие компоненты, мас. %:

Аl 7,7-8,7
Сr 5,0-6,0
Мо 4,5-5,5
W 2,5-3,5
Ti 0,3-0,8
Re 1,2-1,8
Со 4,0-6,0
С 0,001-0,02
La 0,002-0,2
Zr 0,05-0,5
Ni остальное

(РФ №2256716 C1, С22С 19/05, опубл. 20.07.2005).

Сплав обладает повышенным пределом ползучести в интервале температур 900-1000°С и повышенной малоцикловой усталостью при 900°С, но имеет недостаточно высокую кратковременную прочность и предел текучести при комнатной температуре.

Известен сплав на основе интерметаллида Ni3Al, содержащий, маc. %:

Аl 7,8-9,0
Сr 5,0-6,5
Мо 3,0-4,0
W 2,7-4,0
Ti 0,8-1,2
С 0,001-0,005
Zr 0,05-0,5
Sn 0,03-0,05
Ni остальное

(РФ №2198233 C1, С22С 19/05, опубл. 10.02.2003).

Сплав указанного состава в интервале температур 900-1100°С имеет хорошую жаропрочность, а при 1200°С на базе 100 часов для кристаллографической ориентации (КГО) [001] недостаточную.

Известен сплав на основе интерметаллида Ni3Al, имеющий следующий состав, мас. %:

Аl 7,7-8,7
Сr 5,0-6,0
Мо 4,5-5,5
W 2,5-3,5
Ti 0,3-0,8
Re 1,2-1,8
Со 3,5-4,5
С 0,005-0,01
La 0,015-0,025
Ni остальное

(РФ №2221890 C1, С22С 19/03, опубл. 20.01.2004).

Сплав имеет недостаточно высокую жаропрочность при 1200°С на базе испытания 100 часов, обладает недостаточным пределом кратковременной прочности и пределом текучести при комнатной температуре для КГО [001].

Наиболее близким сплавом к предложенному по изобретению является сплав на основе интерметаллида Ni3Al, содержащий, мас. %:

Аl 8,2-8,7
Сr 2,5-6,0
Мо 2,8-4,2
W 2,8-4,5
Ti 0,01-1,2
Та 0,5-5,5
Re 0,01-1,4
Со 0,01-5,5
С 0,015-0,08
La 0,015-0,4
Hf 0,01-0,6
Zr 0,01-0,08
Y 0,015-0,15
Ni остальное

(РФ №2434068 C1, C22C 19/05, опубл. 20.11.2011).

Известный сплав обладает повышенной жаропрочностью при температуре 1200°С на базе 100 часов, а также хорошей кратковременной прочностью и пределом текучести при комнатной температуре для КГО [001]. Недостатком этого сплава является недостаточно высокая коррозионная стойкость в сульфидно-оксидной среде при температурах до 850°С и недостаточная малоцикловая стойкость на базе 1×104 циклов при температурах вплоть до 750°С монокристаллов с кристаллографической ориентацией (КГО) [001].

Изделия из этого сплава, например бандажные полки ГТД, створки регулируемого сопла, имеют низкий ресурс работы из-за указанных недостатков сплава.

Задача, на решение которой направлено настоящее изобретение, заключается в разработке сплава на основе интерметаллида Ni3Al с монокристаллической структурой с КГО [001] и изделия, выполненного из него, обладающих высокой коррозионной стойкостью в сульфидно-оксидной среде при температурах до 850°С, высокой долговечностью в условиях малоцикловой усталости при рабочих температурах до 750°С, работоспособного до температуры 1250°С с кратковременными забросами до 1300°С.

Техническим результатом изобретения является повышение показателей по малоцикловой усталости на базе 1×104 цикла при температурах до 750°С, коррозионной стойкости в сульфидно-оксидной среде при температурах до 850°С для КГО [001], кратковременной прочности при 1250 и 1300°С, что обеспечивает повышение ресурса работы изделий, выполненных из этого сплава, и делает его работоспособным до температуры 1250°С с кратковременными забросами до 1300°С.

Технический результат достигается тем, что литой сплав на основе интерметаллида Ni3Al, содержащий алюминий, хром, молибден, вольфрам, титан, тантал, рений, кобальт, лантан, гафний и никель, дополнительно содержит редкоземельный элемент празеодим при следующем соотношении компонентов, мас. %:

Аl 8,1-8,8
Сr 3,5-4,5
Мо 5,0-6,5
W 2,7-3,5
Ti 0,5-1,5
Та 2,0-5,0
Re 1,5-2,0
Со 5,5-7,0
С 0,015-0,08
La 0,015-0,15
Hf 0,3-0,6
Pr 0,01-0,2
Ni и неизбежные примеси остальное

При этом в качестве неизбежных примесей сплав может содержать: железо, ниобий, марганец не более 0,3 мас. % каждой; серу и фосфор не более 0,005 мас. % каждой; олово и сурьму не более 0,003 мас. % каждой; свинец не более 0,001 мас. %; висмут не более 0,0005 мас. %.

Технический результат достигается и в изделии, выполненном из заявленного сплава.

Сущность изобретения заключается в следующем.

Введение в сплав 0,01-0,2 мас. % празеодима совместно с лантаном обеспечивает формирование в сульфидно-оксидной среде при температурах до 850°С плотной пленки сложного состава, состоящей из изоморфных тугоплавких оксидов с высокой температурой плавления, (La,Pr)2O3пл=2210-2296°С), и сульфидов (La,Pr)S (Тпл=2175-2230°С), что обеспечивает уплотнение защитной пленки на поверхности сплава и улучшает ее адгезию с основой, в результате чего создаются условия для повышения коррозионной стойкости в сульфидно-оксидной среде при температурах до 850°С включительно.

Увеличение по сравнению с известным сплавом содержания кобальта и рения позволяет обеспечить одновременное повышение характеристик прочности, пластичности и вязкости разрушения за счет улучшения прочности когерентных межфазных слоев γ'/γ и упрочнения γ' и γ фаз. Такая комбинация элементов в сплаве обеспечивает высокую долговечность сплава в условиях малоцикловой усталости на базе 1×104 цикла при рабочих температурах до 750°С включительно и работоспособность до температуры 1250°С с кратковременными забросами до 1300°С.

Примеры осуществления

Шихтовую заготовку из предлагаемого сплава различных составов и сплава-прототипа выплавляли из чистых шихтовых материалов в вакуумной индукционной печи с тиглем из основной футеровки. После разливки сплавов в кокили D=50 мм отбирали стружку на химический анализ. Результаты химанализа сплавов приведены в таблице 1. Перед последующими операциями шихтовую заготовку протачивали по поверхности на глубину 1-2 мм для удаления слоя, контактирующего с чугуном, затем разрезали на мерные заготовки весом по 2 кг для последующего переплава.

Образцы D=16 мм и длиной 150 мм получали методом направленной кристаллизации в вакууме 1,5-2,5×10-3 мм рт.ст. Поверхность образцов и деталей контролировалась путем выявления микроструктуры в смеси соляной кислоты и перекиси водорода. При наличии одного макрозерна вдоль оси образца отливка считается монокристалической, при наличии двух и более зерен без выклинивания - столбчатой структурой.

Свойства предлагаемого сплава с различным соотношением компонентов и сплава-прототипа, полученных по одной и той же технологической схеме, приведены в таблице 2.

Из таблицы 2 видно, что свойства предлагаемого сплава на основе интерметаллида Ni3Al существенно выше, чем известного. Малоцикловая на базе 1×104 цикла выносливость предполагаемого сплава при 750°С выше на 12-15%, чем у сплава-прототипа. Скорость сульфидно-оксидной коррозии при 850°С предполагаемого сплава ниже в 2 раза, чем у сплава-прототипа. Предел кратковременной прочности при 1250°С и при 1300°С нельзя сравнить со свойствами сплава-прототипа, поскольку при этих температурах прочностные характеристики сплава-прототипа настолько низки, что даже не оцениваются.

Использование предлагаемого сплава на основе интерметаллида Ni3Al повышает надежность изделий и увеличивает ресурс их работы и повышает их рабочие температуры.

1. Литой сплав на основе интерметаллида Ni3Al, содержащий алюминий, хром, молибден, вольфрам, титан, тантал, рений, кобальт, углерод, лантан, гафний и никель, отличающийся тем, что он дополнительно содержит празеодим при следующем соотношении компонентов, в мас. %:

Al 8,1-8,8
Cr 3,5-4,5
Mo 5,0-6,5
W 2,7-3,5
Ti 0,5-1,5
Ta 2,0-5,0
Re 1,5-2,0
Co 4,0-7,0
C 0,015-0,08
La 0,015-0,15
Hf 0,3-0,6
Pr 0,01-0,2
никель и неизбежные примеси остальное.

2. Сплав по п. 1, отличающийся тем, что в качестве неизбежных примесей он содержит железо, ниобий, марганец не более 0,3 мас. % каждого, серу и фосфор не более 0,005 мас. % каждого, олово и сурьму не более 0,003 мас. % каждого, свинец не более 0,001 мас. %, висмут не более 0,0005 мас. %.

3. Изделие из литого сплава на основе интерметаллида Ni3Al, отличающееся тем, что оно выполнено из сплава по п. 1.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к термомеханической обработке сплавов на основе никеля. Способ термомеханической обработки заготовки из сплава на основе никеля включает первый этап нагревания заготовки до температуры 1093-1163°С, первый этап ротационной ковки нагретой до 1093-1163°С заготовки с уменьшением площади поперечного сечения на 30-70%, второй этап нагревания заготовки до температуры 954-1052°С, причем между окончанием первого этапа ковки и началом второго этапа нагревания заготовку поддерживают при температуре ниже температуры растворения карбидов М23С6 и не позволяют ей охлаждаться до температуры окружающей среды, и второй этап ротационной ковки нагретой до 954-1052°С заготовки с уменьшением площади поперечного сечения на 20-70%.

Изобретение относится к области металлургии, а именно к хромоникелевому сплаву, и может быть использовано при строительстве печей, а также в химической и нефтехимической отраслях промышленности.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для деталей, работающих при температурах до 1000oC в газотурбинных двигателях.

Изобретение относится к сплавам на основе никеля в качестве присадочного материала, предназначенного для изготовления деталей и узлов наиболее высокотемпературных зон горячего тракта перспективных двигателей, длительно работающих при температурах до 1200°С.

Изобретение относится к области металлургии жаропрочных свариваемых деформируемых сплавов и изделий, выполненных из этих сплавов, и может быть использовано для изготовления элементов камеры сгорания, сопла и других узлов газотурбинных двигателей и установок, работающих до температуры 1250°C.

Изобретение относится к области металлургии, а именно к сплавам на основе никель-молибден-хром-вольфрам, работающим при повышенных температурах и пригодным для применения в газотурбинных двигателях.

Изобретение относится к области металлургии, а именно к хромоникелевоалюминиевому сплаву. Сплав содержит в мас.%: более 25 до 33 хрома, от 1,8 до менее 3,0 алюминия, от 0,10 до менее 2,5 железа, 0,001-0,50 кремния, 0,005-2,0 марганца, 0,00-0,60 титана, по 0,0002-0,05 каждого из магния и/или кальция, 0,005-0,12 углерода, 0,001-0,050 азота, 0,0001-0,020 кислорода, 0,001-0,030 фосфора, не более 0,010 серы, не более 2,0 молибдена, не более 2,0 вольфрама, остальное - никель и обычные, технологически обусловленные примеси.

Изобретение относится к области металлургии, а именно к сплавам для защитных покрытий для защиты конструктивного элемента от коррозии и/или окисления. Сплав на основе никеля для защиты конструктивного элемента газовой турбины от коррозии и/или окисления при высоких температурах содержит, в вес.%: от более 22 до менее 24 кобальта (Со), от 14 до менее 16 хрома (Cr), 10,5-11,5 алюминия (Al), 0,2-0,4, по меньшей мере одного элемента из группы, включающей в себя скандий (Sc) и редкоземельные элементы, в частности иттрий (Y), при необходимости от 0,3 до 0,9 тантала (Та), никель (Ni) - остальное.

Изобретение относится к области металлургии, а именно к жаропрочным никелевым сплавам для получения изделий, производимых методом металлургии гранул и предназначенных для работы при высоких нагрузках и температурах, например в газотурбинных двигателях.

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе интерметаллида Ni3Al, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей горячего тракта газотурбинных двигателей авиационной промышленности.

Изобретение относится к области металлургии, а именно к производству жаростойких порошковых сплавов на основе интерметаллида NiAl, и может быть использовано в авиационной, космической и энергетической отраслях для изготовления теплонагруженных деталей, работающих в условиях высоких температур и испытывающих относительно невысокие механические нагрузки. Гранулируемый сплав на основе интерметаллида NiAl содержит, мас. %: алюминий 24,5-29,9; кобальт 5,27-6,35; хром 5,98-7,3; гафний 1,0-1,2; бор 0,03-0,04; никель - остальное. Сплав характеризуется высокой жаропрочностью и пластичностью. 4 табл., 3 пр.

Изобретение относится к области металлургии, а именно к сплавам на основе никеля, которые могут быть использованы в качестве материала для изготовления элементов зажигания двигателей внутреннего сгорания. Сплав на основе никеля содержит, мас.%: Si 1,5-3,0, Al 1,5-3,0, Cr >0,1-3,0, Fe 0,005-0,20, Y 0,01-0,20, один или несколько из элементов: Hf, Zr, La, Ce, Ti <0,001-0,20, C 0,001-0,10, N 0,0005-0,10, Mn 0,001-0,20, Mg 0,0001-0,08, O 0,0001-0,010, S не более 0,015, Cu не более 0,80, Ni и обычные технологически обусловленные примеси - остальное. Сплав характеризуется высокими значениями стойкости к искровой эрозии и стойкости к коррозии при одновременно достаточных значениях деформируемости и свариваемости. 2 н. и 18 з.п. ф-лы.

Изобретение относится к области металлургии деформируемых сплавов системы Ni-Cr-Мо и может быть использовано для изготовления коррозионно-стойких труб, корпусов, испарителей и других сварных узлов и деталей, работающих в агрессивных окислительных средах, в частности хлоридных, как, например, расплава KCl-AlCl3, в области температур до 650°С. Корозионно-стойкий сплав на основе никеля содержит, мас. %: хром 28-30, молибден 8-10, азот 0,005-0,1, алюминий 0,1-0,3, углерод 0,004-0,01, кремний 0,001-0,05, железо не более 0,5, марганец не более 0,25, лантан 0,002-0,05, никель и примеси 61-63. Сплав обладает улучшенными физико-механическими и эксплуатационными свойствами: структурной стабильностью в хлоридных средах в температурном интервале 500-650°С, пластичностью, коррозионной стойкостью, включая стойкость против локальных видов коррозии, при хороших значениях деформируемости и свариваемости. 1 з.п. ф-лы, 3 табл.

Жаропрочный сплав используется для изготовления реакционных труб змеевиков установок производства этилена и др. нефтегазоперерабатывающих установок, с рабочими режимами при температуре 650÷1000°C и давлением до 10 атмосфер. Жаропрочный сплав содержит, мас. %: углерод 0,35÷0,45; хром 24,0÷27,0; никель 18,0÷21,0; кремний 1,9÷2,5; марганец 1,0÷1,5; ванадий 0,0005÷0,20; титан 0,0005÷0,10; алюминий 0,0005÷0,10; иттрий >0÷0,001; кислород >0,0005÷0,028; водород >0,0005÷0,0025; азот >0,0005÷0,095; сера ≤0,03, фосфор ≤0,03, свинец ≤0,009, олово ≤0,009, мышьяк ≤0,009, цинк ≤0,009, сурьма ≤0,009; молибден ≤0,5; медь ≤0,2; железо - остальное, при этом одновременно должны выполняться условия (CrЭ/NiЭ)≥0,735, где CrЭ - эквивалент хрома; NiЭ - эквивалент никеля; CrЭ=Cr+2×Al+3×Ti+V+Mo+l,6×Si+0,6×Nb; NiЭ =Ni+32×C+0,6×Mn+22×N+Cu. Обеспечивается увеличение структурной стабильности сплава в процессе старения, а также снижение склонности сплава к образованию горячих трещин при сварке. 1 з.п. ф-лы.

Изобретение относится к металлургии, в частности к использованию сплава для изготовления реакционных труб установок производства этилена, водорода, аммиака, сероуглерода, метанола и с рабочими режимами при температуре 600÷1200°С и давлением до 50 атм. Жаропрочный сплав содержит, мас.%: углерод≤0,60; хром 16,0÷29,0; никель 8,0÷50,0; вольфрам ≤6,0; ниобий ≤2,0; цирконий 0,005÷0,20; иттрий 0,005÷0,15; бериллий ≤0,20; барий ≤0,35; кальций ≤0,25; кобальт ≤16; церий ≤0,2; кремний ≤2,75; марганец ≤2,00; ванадий ≤0,2; магний ≤0,15; титан ≤0,6; бор ≤0,015; алюминий ≤1,1; лантан 0,002÷0,030; неодим 0,002÷0,010; празеодим 0,002÷0,010; гафний 0,002÷0,5; рений 0,002÷0,5; тантал 0,002÷0,5; железо - остальное; сера ≤0,04; фосфор ≤0,04; свинец ≤0,02; олово ≤0,02; мышьяк ≤0,02; сурьма ≤0,02; цинк≤0,02; азот >0,0005÷0,095; кислород >0,0005÷0,028; водород >0,0005÷0,0025; молибден ≤0,6; медь ≤1,1 при выполнении следующих условий, мас.%: (СrЭ / NiЭ)≥0,506, где СrЭ - эквивалент хрома; NiЭ – эквивалент никеля; СrЭ=Сr+2×Аl+3×Тi+V+Mo+l,6×Si+W+0,6×Nb; NiЭ=Ni+32×С+0,6×Mn+Со+22×N+Сu. Обеспечивается увеличение структурной стабильности сплава в процессе старения, а также снижение склонности сплава к образованию горячих трещин при сварке. 2 з.п. ф-лы.

Изобретение относится к области металлургии, а именно к способу термообработки дисперсионно-твердеющих сплавов на основе никеля, и может быть использовано при производстве сотового заполнителя системы теплозащиты для гиперзвукового летательного аппарата или космического аппарата. Способ термообработки изделия из сплава на основе никеля типа ATI 718 включает нагрев изделия до температуры в диапазоне от 1700°F (926,7°С) до 1725°F (940,6°С), выдержку при этой температуре в течение от 30 минут до 300 минут и охлаждение на воздухе со скоростью не более 1°F/мин (0,56°С/мин) до температуры окружающей среды. Обработанные сплавы имеют стабильную структуру и однородные механические свойства в течение времени эксплуатации при температуре, превышающей температуру дисперсионного твердения. 2 н. и 13 з.п. ф-лы, 22 ил., 3 пр.

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано для изготовления высоконагруженных роторных деталей, работающих при температурах до 650-700°С в газотурбинных двигателях. Жаропрочный никелевый сплав содержит, мас. %: углерод 0,08-0,15; хром 10,5-12,5; кобальт 14,0-16,0; вольфрам 4,0-6,0; молибден 2,6-3,6; титан 2,5-3,5; алюминий 3,6-4,6; ниобий 3,0-4,0; тантал 0,1-1,3; гафний 0,05-0,2; ванадий 0,1-0,5; бор 0,005-0,05; цирконий 0,001-0,05; церий 0,001-0,05; скандий 0,01-0,1; магний 0,001-0,05; остальное - никель и неизбежные примеси. Сплав имеет высокую прочность и жаропрочность, обладает высоким сопротивлением малоцикловой усталости. 2 н. и 4 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой. Литейный никелевый сплав содержит, мас. %: хром 9-18, кобальт 7-20, вольфрам 1-8, молибден 0,2-4,0, алюминий 1,5-5,0, титан 1,5-5,0, тантал 2,4-7,5, ниобий 0,05-2,0, бор 0,005-0,5, лантан 0,005-0,5, иттрий 0,01-0,5, церий 0,02-0,5, рений 0,5-6,0, гафний 0,05-1,5, марганец 0,05-1,0, кремний 0,05-1,0, магний 0,01-0,5, углерод 0,003-0,03, скандий 0,0002-0,01, празеодим 0,0002-0,01, гадолиний 0,0002-0,01, неодим 0,0002-0,01. Сплав характеризуется высокой стойкостью к морской солевой коррозии и высоким уровнем жаропрочности. 5 ил., 3 табл.

Изобретение относится к области металлургии, в частности, к составам сплавов на основе никеля, которые могут быть использованы, например, для изготовления деталей двигателей, труб. Сплав на основе никеля содержит, мас. %: углерод 0,02-0,1; хром 20,0-25,0; кобальт 10,0-15,0; алюминий 0,1-0,18; элемент из группы, включающей лантан и неодим 0,01-0,1; рений 0,3-0,8; гафний 2,0-4,0; ниобий 2,0-4,0; никель - остальное. Сплав характеризуется высокой термостойкостью. 1 табл.

Изобретение относится к области металлургии, а именно к предсварочной термообработке компонента турбины. Способ предварительной термообработки перед сваркой компонента турбины из никелевого сплава Inconel 939 включает нагрев компонента турбины до первой температуры в диапазоне от температуры на 35°F (19,4°C) ниже температуры растворения фазы γ' и до температуры начала плавления сплава и выдержку при этой температуре, охлаждение со скоростью 1°F (0,56°C) в минуту до температуры 1900°F(±25°F) (1038±15°C) и выдержку при этой температуре, охлаждение со скоростью 1°F в минуту до температуры 1800°F(±25°F) (982±15°C) и выдержку при этой температуре. Затем проводят охлаждение компонента со скоростью 1°F в минуту до температуры в диапазоне от 1650°F(±25°F) до 1450°F(±25°F) ((899-788)±15)°C. Уменьшается растрескивание при деформационном старении во время сварки и последующей термообработки. 3 н. и 7 з.п. ф-лы, 9 ил., 2 табл.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей газотурбинных двигателей авиационной промышленности, например сопловых и рабочих лопаток, блоков сопловых лопаток, сегментов камеры сгорания, створок. Сплав на основе интерметаллида Ni3Al содержит, мас. : Al 8,1-8,8, Сr 3,5-4,5, Mo 5,0-6,5, W 2,7-3,5, Ti 0,5-1,5, Та 2,0-5,0, Re 1,0-2,0, Со 4,0-7,0, С 0,015-0,08, La 0,015-0,15, Hf 0,3-0,6, Pr 0,01-0,2, Ni и неизбежные примеси - остальное. Сплав характеризуется повышенной стойкостью к малоцикловой усталости при осевой нагрузке на базе 1×104 циклов на гладких образцах при 750°С, повышенной стойкостью к сульфидно-оксидной коррозии при 850°С, а также высоким ресурсом работы до температуры 1250°С и кратковременно до 1300°С. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Наверх