Способ извлечения липидов из биомассы микроводорослей chlorella и дрожжей yarrowia lipolytica



Способ извлечения липидов из биомассы микроводорослей chlorella и дрожжей yarrowia lipolytica
Способ извлечения липидов из биомассы микроводорослей chlorella и дрожжей yarrowia lipolytica

Владельцы патента RU 2610675:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Изобретение относится к биотехнологии. Предложен способ извлечения липидов из микроводоросли рода Chlorella и дрожжей Yarrowia lipolytica для получения биодизельного топлива. Способ включает дополнение стадии культивирования микроводорослей Chlorella стадией культивирования дрожжей Yarrowia lipolytica W23. Липидную фракцию экстрагируют органическими растворителями хлороформ-метанол в соотношении 2:1-1:2 из биомассы микроводоросли и дрожжей, причем остаточную биомассу микроводоросли и остаточную биомассу дрожжей подвергают гидролизу при температуре 80-140°C в течение 20-90 минут и в виде водной суспензии используют в качестве питательной среды для выращивания дрожжей Yarrowia lipolytica W23. Изобретение обеспечивает получение высокого выхода липидов – до 37% по сухому весу. 5 з.п. ф-лы, 1 ил., 1 табл., 6 пр.

 

Изобретение относится к области биотехнологии, в частности к способам получения биодизеля из биомассы микроводорослей, предварительно выращенной в фотобиореакторах различной конструкции (открытых, закрытых, цилиндрических, плоских и трубчатых), а также биомассы дрожжей. Собранная биомасса микроводорослей предназначена для дальнейшей переработки с целью выделения липидов и получения из них биодизеля, остаточная биомасса используется для наращивания дрожжевой биомассы, из которой также выделяют липиды для получения биодизеля.

Новым перспективным подходом получения энергии из возобновляемых источников является использование микроводорослей - продуцентов липидов (Singh A. et. al., 2011; Lee D.H. 2011).

Продуктивность микроводорослей по биомассе и липидам на порядок превышает продуктивность наземных растений. Так, например, в некоторых видах водорослей при оптимальных условиях культивирования содержание липидов от сухой массы превышает таковое в масличных растениях: Botryococcus braunii 25-75%, Chlorella sp. 28-32%, Crypthecodinium cohnii 20%, Cylindrotheca sp. 16-37%, Dunaliella primolecta 23%, Isochrysis sp. 25-33%, Monallanthus salina >20, Nannochloris sp. 20-35%, Nannochloropsis sp. 31-68%, Neochloris oleoabundans 35-54%, Nitzschia sp. 45-47%, Phaeodactylum tricornutum 20-30%, Tetraselmis sueica 15-23. При этом площадь, необходимая для их выращивания, составляет в 50-100 раз и в 350-750 раз меньше чем, например, для рапса и кукурузы соответственно (Chisti Y., 2007).

На основе литературных данных можно сделать вывод, что достаточно большое количество видов микроводорослей обладают способностью к увеличенному продуцированию липидов. Однако для полной реализации биосинтетического потенциала того или иного штамма необходимо подобрать наиболее подходящие условия как для культивирования, так и для накопления липидов.

Известны различные способы культивирования биомассы микроводорослей для получения липидов.

Согласно способу (Патент РФ 2507251) инокулят микроводоросли Desmodesmus sp. штамм 2С166Е вносят в минеральную среду BG-11 до конечной концентрации хлорофилла в смеси 4-6 мкг/мл. Культивируют при постоянном освещении и барботировании среды атмосферным воздухом в течение 12-16 суток при температуре 25-27°C с последующим отделением биомассы микроводорослей от питательной среды с получением биомассы микроводоросли, содержащей 33-35% жирных кислот от сухого веса клеток.

Согласно способу (Патент РФ 2497944) культивирование микроводорослей биотопливного назначения включает две стадии альголизации. На первой стадии осуществляют альголизацию первичным инокулятом культуры, преимущественно Chlorella vulgaris BIN, полученным в фотобиореакторе, синхронно или со сдвигом по времени многофункциональных закрытых бассейнов со светопроницаемыми ограждениями. Общий объем указанных бассейнов составляет от 1/30 до 1/15 от общего объема открытых водоемов. Выращивают вторичный инокулят с объемной плотностью 109-1011 клеток/л, при этом культивирование начинают в весенний период при среднесуточной температуре воды в бассейнах в диапазоне 12-18°C. Вторую стадию культивирования микроводорослей начинают путем отбора из бассейнов вторичного инокулята при температуре воды в открытых водоемах 12-18°C и продолжают его подачу в открытые водоемы до достижения в них объемной плотности микроводорослей 2⋅108-109. Частично отбирают вторичный инокулят из бассейна в качестве готового продукта в весенний и осенний периоды при температуре воды в них в диапазоне 8-12°C, при этом в многофункциональные бассейны добавляют равное количество воды с растворенными в ней биогенами. Изобретение обеспечивает увеличение производительности способа культивирования микроводорослей. Полученные микроводоросли содержат 33,9% клетчатки, 51,0% белков, 7,3% жиров.

Известен способ (Патент РФ 2508398), по которому культивирование штамма микроводоросли Chlorella vulgaris Al 123 проводят в лабораторных условиях при температуре 25°C на среде ВВМ pH 6.8 в лимитированных по азоту условиях проводя в течение 7 дней, в объеме среды 200 мл в колбах на 500 мл, при непрерывном барботировании суспензии стерильным воздухом со скоростью 200 мл/мин, при освещенности 120 Вт/м2 с фотопериодом 16 ч. Содержание липидов в биомассе микроводоросли Chlorella vulgaris Al 123 на среде с глюкозой при миксотрофном культивировании составляет 32% (по сухому весу).

Исходя из этого, предлагается для переработки использовать микроводоросли рода Chlorella.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ извлечения биологически активных веществ из биомассы микроводоросли рода Chlorella [Патент RU 2044770 C1, C12N 1/12, С12Р 21/00, A23J 3/20, A23K 1/00, 1992] - двухстадийный способ извлечения биологически активных веществ из биомассы микроводоросли рода Chlorella, который позволяет получить продукты различной природы. На первой стадии для получения липидно-пигментного комплекса с максимальным выходом сухую биомассу микроводоросли заливают 6 л экстрагента (этанол, бензин или смесь этанол-бензин (1:2)) и перемешивают в течение 6 ч при комнатной температуре. Экстракт отделяют фильтрованием, а оставшуюся биомассу заливают свежей порцией растворителя в объеме 4 л, перемешивают в течение 3 ч и фильтруют. Экстракты объединяют и концентрируют в вакуумном испарителе при температуре не выше 45°C. Конечными продуктами являются липид-пигментный комплекс с выходом 11-15% (массовых) и обезжиренная биомасса. На второй стадии процесса обезжиренную биомассу подвергают гидролизу ферментами целлюлолитического и протеолитического действия, проводят термообработку для инактивации ферментов, разделяют белковый гидролизат и шрот.

Данным способом выделяют липиды только на первой стадии с выходом 11-15% (массовых).

Задачей предлагаемого изобретения является создание способа, позволяющего перерабатывать микроводоросли рода Chlorella в замкнутом безотходном цикле для получения липидов с высоким выходом (до 37% по сухому весу), которые затем используются для производства биодизеля.

Для достижения указанного результата предложен способ извлечения липидов из биомассы микроводоросли рода Chlorella, заключающийся в том, что биомассу микроводоросли отделяют от культуральной среды, обрабатывают органическими растворителями для экстракции липидной фракции, а остаточную биомассу микроводоросли направляют на дальнейшую переработку, при этом остаточную биомассу микроводоросли подвергают гидролизу и в виде водной суспензии используют в качестве питательной среды для выращивания дрожжей Yarrowia lipolytica W23, после чего биомассу дрожжей отделяют от культуральной среды и экстрагируют из нее липидную фракцию, а остаточную биомассу дрожжей подвергают гидролизу и направляют на стадию их выращивания.

Кроме того,

- в качестве органического растворителя используют хлороформ-метанол в соотношении 2:1 - 1:2;

- биомассу микроводоросли Chlorella подвергают гидролизу при температуре 80-140°C 20-90 минут;

- остаточную биомассу дрожжей Yarrowia lipolytica W23 подвергают гидролизу при температуре 80-140°C 20-90 минут;

- используют 5% - 20% водную суспензию остаточной биомассы микроводоросли;

- количество остаточной биомассы дрожжей в питательной среде для их выращивания составляет 5-10%.

Принципиальная схема реализации способа показана на чертеже.

В качестве микроводоросли использовали Chlorella vulgaris GKV-1.

Выбор дрожжей Yarrowia lipolytica W23 обусловлен их способностью накапливать большое количество липидов, а также возможностью генной модификации разработанными методами с целью увеличения выхода липидов.

Стадии способа:

1. Культивируют микроводоросль Chlorella vulgaris GKV-1;

2. Биомассу микроводоросли Chlorella vulgaris GKV-1 отделяют от культуральной среды и высушивают;

3. Измельчают биомассу микроводоросли и экстрагируют липидную фракцию органическим растворителем;

4. Отделяют липидную фракцию от растворителей;

5. Получают биодизель из липидной фракции;

6. Остаточную биомассу микроводоросли подвергают гидролизу; из гидролизованной остаточной биомассы микроводоросли готовят водную суспензию и направляют ее для выращивания дрожжей Yarrowia lipolytica.

7. Выращивают биомассу дрожжей Yarrowia lipolytica W23 на остаточной биомассе микроводорослей, отделяют биомассу дрожжей и высушивают;

8. Измельчают биомассу дрожжей и экстрагируют липидную фракцию с помощью органического растворителя.;

9. Отделяют липидную фракцию и направляют ее на получение биодизеля;

10. Остаточную биомассу подвергают гидролизу и используют для выращивания дрожжей Yarrowia lipolytica W23.

Параметры способа были выбраны исходя из следующих соображений.

Биомассу микроводоросли Chlorella vulgaris и дрожжей Yarrowia lipolytica подвергают гидролизу при температуре от 80°C до 140°C в течение 20-90 минут; данный диапазон температур и времени обработки является наиболее подходящим для гидролиза биомассы микроводорослей и дрожжей для использования их в качестве компонента питательных сред с целью получения липидов: при температуре ниже 80°C не достигается необходимого разрушения биомассы, выше 140°C дополнительного разрушения биомассы не происходит.

В качестве органического растворителя используют хлороформ-метанол при соотношении 2:1-1:2; при данных соотношениях органических растворителей наблюдается наибольшее количество извлекаемых липидов из биомассы микроводорослей и дрожжей.

Концентрация водной суспензии из гидролизованной биомассы микроводоросли Chlorella vulgaris, которую направляют для выращивания дрожжей Yarrowia lipolytica, составляет 5%-20%, при таких концентрациях наблюдается наибольший выход липидов при переработке дрожжей.

Гидролизованную биомассу дрожжей Yarrowia lipolytica вносят в качестве компонента в питательную среду для выращивания дрожжей Yarrowia lipolytica. Посевная доза дрожжей составляет 5-15% от объема среды, при таких концентрациях наблюдается наибольший выход липидов при переработке дрожжей.

Примеры реализации способа

Пример 1.

Выращивание микроводоросли Chlorella vulgaris GKV-1 происходит фототрофно в течение 7 суток, температура 24±2°C, на стандартной среде Basal medium ((Yeh and Chang, 2012), pH 7.0, в объеме среды 250 мл в колбах на 500 мл, при непрерывном барботировании суспензии стерильным воздухом с скоростью 250 мл/мин, при освещенности 3000 люкс с фотопериодом 24 ч.

Клетки микроводоросли отделяют центифугированием при 8500g в течение 7 минут. Полученную биомассу микроводоросли высушивают. Далее сухую биомассу микроводоросли измельчают в гомогенизаторе. Извлечение липидов осуществляют путем встряхивания на качалке с частотой вращения 200 об/мин с органическим растворителями - хлороформ-метанол (2:1) при комнатной температуре. Затем надосадочную жидкость (липидная фракция) отделяют центрифугированием. Липидную фракцию концентрируют в вакууме на роторном испарителе и затем используют для получения биодизельного топлива. Остаточную биомассу микроводоросли после извлечения липидов гидролизуют в автоклаве при 121°C 30 минут, из него готовят 10% водную суспензию, стерилизуют в автоклаве при 121°C 20 минут и используют в качестве питательной среды для выращивания дрожжей Yarrowia lipolytica W23. Посевная доза дрожжей составляет 5% от объема среды. Дрожжи выращиваются в объеме среды 250 мл в колбах на 500 мл, в течение 48 часов при 25±2°C на качалке с частотой вращения 150 об/мин. Клетки дрожжей отделяют центифугированием при 8500g в течение 7 минут. Полученную биомассу дрожжей высушивают. Далее сухую биомассу дрожжей измельчают в гомогенизаторе. Извлечение липидов осуществляют путем встряхивания с частотой вращения 200 об/мин на качалке с органическим растворителями - хлороформ-метанол (2:1) при комнатной температуре. Затем надосадочную жидкость (липидная фракция) отделяют центрифугированием. Липидную фракцию концентрируют в вакууме на роторном испарителе и затем используют для получения биодизельного топлива. Содержание общих липидов определяли гравиметрически.

Выход липидов из биомассы микроводорослей составил 15% (по сухому весу), из биомассы дрожжей 21,5% (по сухому весу). В сумме выход по липидам составляет 36,5% (по сухому весу).

Пример 2.

То же, что в примере 1, только остаточная биомасса микроводорослей гидролизуется в автоклаве при 121°C 60 минут, из нее готовят 15% водную суспензию, которая используется для выращивания дрожжей.

Выход липидов из биомассы микроводорослей составил 15% (по сухому весу), из биомассы дрожжей 21,7% (по сухому весу). В сумме выход по липидам составляет 36,7% (по сухому весу).

Пример 3.

То же, что в примере 1, только остаточная биомасса микроводорослей гидролизуется в автоклаве при 121°C 30 минут, из нее готовят 10% водную суспензию, к ней добавляют гидролизованную при 121°C 30 минут остаточную биомассу дрожжей в количестве 5%. Данная питательная среда используется для выращивания дрожжей.

Выход липидов из биомассы микроводорослей составил 15% (по сухому весу), из биомассы дрожжей 21,8% (по сухому весу). В сумме выход по липидам составляет 36,8% (по сухому весу).

Пример 4.

То же, что в примере 1, только остаточная биомасса микроводорослей гидролизуется в автоклаве при 121°C 60 минут, из нее готовят 10% водную суспензию, к ней добавляют гидролизованную при 121°C 60 минут остаточную биомассу дрожжей в количестве 10%. Данная питательная среда используется для выращивания дрожжей.

Выход липидов из биомассы микроводорослей составил 15% (по сухому весу), из биомассы дрожжей 22% (по сухому весу). В сумме выход по липидам составляет 37% (по сухому весу).

Пример 5.

То же, что в примере 1, только извлечение липидов из биомассы микроводорослей осуществляли органическими растворителями - хлороформ-метанол в соотношении 1:1.

Выход липидов из биомассы микроводорослей составил 14,9% (по сухому весу), из биомассы дрожжей 21,3% (по сухому весу). В сумме выход по липидам составляет 36,2% (по сухому весу).

Пример 6.

То же, что в примере 1, только извлечение липидов из биомассы микроводорослей осуществляли органическими растворителями - хлороформ-метанол в соотношении 1:2.

Выход липидов из биомассы микроводорослей составил 14,8% (по сухому весу), из биомассы дрожжей 21,2% (по сухому весу). В сумме выход по липидам составляет 36% (по сухому весу).

В таблице приведено сравнение предлагаемого способа получения липидов из биомассы микроводорослей и дрожжей со способом, представленным в Патенте RU 2044770.

Использование остаточной биомассы микроводорослей и остаточной биомассы дрожжей позволяет повысить суммарный выход липидов в замкнутом безотходном цикле до 37,0% (по сухому весу)

1. Способ извлечения липидов из биомассы микроводоросли рода Chlorella и дрожжей Yarrowia lipolytica, заключающийся в том, что биомассу микроводоросли отделяют от культуральной среды, обрабатывают органическими растворителями для экстракции липидной фракции, а остаточную биомассу микроводоросли направляют на дальнейшую переработку, причем остаточную биомассу микроводоросли подвергают гидролизу и в виде водной суспензии используют в качестве питательной среды для выращивания дрожжей Yarrowia lipolytica W23, после чего биомассу дрожжей отделяют от культуральной среды и экстрагируют из нее липидную фракцию, а остаточную биомассу дрожжей подвергают гидролизу и направляют на стадию их выращивания.

2. Способ по п. 1, отличающийся тем, что в качестве органического растворителя используют хлороформ-метанол в соотношении 2:1-1:2.

3. Способ по п. 1, отличающийся тем, что биомассу микроводоросли Chlorella подвергают гидролизу при 80-140°C 20-90 минут.

4. Способ по п. 1, отличающийся тем, что остаточную биомассу дрожжей Yarrowia lipolytica W23 подвергают гидролизу при 80-140°C 20-90 минут.

5. Способ по п. 1, отличающийся тем, что используют 5%-20% водную суспензию остаточной биомассы микроводоросли.

6. Способ по п. 1, отличающийся тем, что количество остаточной биомассы дрожжей в питательной среде для их выращивания составляет 5-10%.



 

Похожие патенты:

Изобретение относится к области биохимии, биотехнологии и медицины, в частности к способу получения рекомбинантного противоопухолевого токсина - химерного бифункционального белка, состоящего из адресного полипептида Darpin 9-29, специфичного к гистохимическому маркеру HER2/neu, и высокоактивной бактериальной рибонуклеазы барназы, соединенных гибким пептидным линкером.

Изобретение относится к биотехнологии и микробиологии, в частности к биопрепаратам и микробным композициям для деградации органических отходов, и может быть использовано для быстрой, эффективной переработки органических отходов быта человека, животноводства и птицеводства в качественное органическое удобрение.
Изобретение относится к биотехнологии и может быть использовано в молочной промышленности, медицине и ветеринарии. Предложенный штамм бактерий Lactobacillus acidophilus ЛИА-Т-193 обладает высокой кислотообразующей активностью.

Изобретение относится к микробиологии и биотехнологии. Штамм Lactobacillus paracasei 1 обладает высокой антагонистической активностью, высоким уровнем кислотообразования, повышенными адгезивными свойствами, устойчивостью к ряду антибиотических препаратов и высокой скоростью накопления биомассы.

Группа изобретений относится к биотехнологии и может быть использована для создания биозащиты растений от фитопатогенов и стимуляции их роста. Группа изобретений включает: штаммы гриба вида Trichoderma longibrachiatum (3 варианта); биопрепарат для стимулирования роста растений и их защиты от фитопатогенов на основе этих штаммов и способ получения этого биопрепарата.

Группа изобретений относится к биотехнологии. Предложен штамм Lactobacillus paracasei MCC1849, обладающий высокой стимулирующей продуцирование IL-12 активностью.

Изобретение относится к сельскохозяйственной биотехнологии. Изобретение представляет собой Штамм микроорганизмов Achromobacter spanius 10-50-TS2, депонированный во Всероссийской Коллекции Промышленных Микроорганизмов ФГУПГосНИИГенетика за №В-12405, в качестве средства повышения устойчивости растений в условиях хлоридного засоления почв.

Изобретение относится к биотехнологии, в частности к получению (R)-фенилметилсульфоксида. Способ предусматривает окисление фенилметилсульфида с применением биокатализатора - иммобилизованных в криогель поливинилового спирта клеток Gordonia terrae ИЭГМ 136.
Заявленная группа изобретений относится к биотехнологии. Способ получения сухой бактериальной закваски для производства кисломолочных продуктов предусматривает раздельное культивирование штаммов Streptococcus thermophilus КД7 41 №2 ВКПМ В-10403 и Streptococcus thermophilus ЗЛ-047 ВКПМ В-10707.

Изобретение относится к медицинской биотехнологии и может быть использовано для детекции антител к L. icterohaemorrhagiae.

Изобретение относится к биотехнологии, прикладной микробиологии и может быть использовано для применения в качестве продуцента душистых соединений. Штамм микроводоросли Chlorella vulgaris Beyerinck SMP-1802153, обладающий способностью синтезировать смесь душистых веществ, аналогичную резиноиду дубового мха, депонирован в коллекции микроводорослей ИФР РАН (IPPAS) под регистрационным номером Chlorella vulgaris Beyerinck IPPAS C-2019.

Изобретение относится к способу разрыва подземной формации, имеющей температуру в скважине, составляющую свыше 160°F, включающий введение в формацию водной гелеобразующей жидкости разрыва с рН от 9,5 до 11, включающей гидратируемый полимер, выбранный из группы, состоящей из гуаровой камеди и из модифицированных гуаровых камедей; сшивающий агент для поперечной сшивки гидратируемого полимера с образованием полимерного геля; и фермент-разжижитель, включающий фермент маннаногидролазу, который имеет аминокислотную последовательность, которая, по меньшей мере, на 90% гомологична аминокислотной последовательности SEQ ID NO:2.
Предложены варианты способа переработки биомассы растительного происхождения в переработанную биомассу, которая является подходящей для использования в качестве топлива.

Группа изобретений включает способы получения бактериального концентрата и их применение в качестве биологически активной добавки к пище или закваски прямого внесения.

Изобретение относится к биотехнологии, а именно к химико-фармацевтической промышленности. Проводят очистку правастатина от стереоизомера 6-эпиправастатина.

Группа изобретений относится к биотехнологии. Предложена группа изобретений: способ получения химического продукта и аппарат для получения химического продукта указанным способом.

Изобретение относится к медицине и касается способов и лекарственных средств, применяемых для профилактики и лечения осложнений сахарного диабета, связанных с развитием дегенеративных процессов в нервной ткани.

Изобретение относится к области биохимии. .

Изобретение относится к области биохимии. .

Изобретение относится к получению нефтяного топлива. .
Изобретение относится к области биохимии. Предложен способ утилизации продуктов сгорания энергоустановок, использующих преимущественно природный газ.
Наверх