Устройство для прекращения неуправляемого движения модели летательного аппарата при ее динамических испытаниях на устойчивость и управляемость

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах и может быть использовано при динамических испытаниях моделей летательных аппаратов в аэродинамических трубах. Устройство состоит из модели, установленной на стойке в потоке АДТ при помощи трехстепенной опоры. В модели выполнен внутренний отсек, с дном, установленным на пружине, и крышкой с замком, управляемым дистанционно от пульта управления. В отсеке помещен парашют, прикрепленный к хвостовой части модели. Технический результат заключается в возможности практически мгновенно прекратить неуправляемое движение модели летательного аппарата при ее динамических испытаниях на устойчивость и управляемость, при этом не оказывает ударных нагрузок на модель и вплоть до срабатывания не влияет на обтекание потоком модели, что повышает точность испытаний. 2 ил.

 

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах.

Для исследования динамики полета самолета на больших углах атаки в настоящее время используются испытания динамических моделей летательных аппаратов в аэродинамических трубах (АДТ) [Бюшгенс Г.С., Студнев Р.В. Аэродинамика самолета. Динамика продольного и бокового движения // Москва. Машиностроение. - 1979, стр. 31-35]. При этом применяются как свободнолетающие модели [Chambers, Joseph R. Modeling flight: the role of dynamically scaled free-flight models in support of NASA's aerospace programs / NASA SP 2009-575], так и модели, закрепленные на шарнире поддерживающего устройства [Прудников Ю.А., Сохи Н.П., Темляков Ю.Н. Патент РФ от 10.04.2004 г. №2226680 на изобретение «Устройство для исследования штопора самолета»]. Одной из главных опасностей при таких испытаниях является возникновение неуправляемого движения модели в потоке АДТ с большой амплитудой и скоростью, что может привести к удару модели о поддерживающее устройство, стенки рабочей части, сопла и диффузора трубы, ее разрушению и повреждению АДТ.

Известно устройство для прекращения неуправляемого движения модели летательного аппарата (ЛА) при динамических испытаниях, имеющее державку в виде направляющей, с закрепленной на ней моделью на шарнире [Беговщиц В.Н., Кабин С.В., Колинько К.А., Нуштаев П.Д., Храбров А.Н. Ученые записки ЦАГИ №3-4 /том XXVII/ 1996, «Метод свободных колебаний на упругом шарнире для исследования нестационарных аэродинамических производных при трансзвуковых скоростях потока»]. На державке установлена подвижная каретка в виде круглой втулки со скошенным краем, приводимая в движение пневмоцилиндром, расположенном в державке. По команде оператора каретка подводится к хвостовой части модели и прекращает ее неуправляемое движение. Это устройство малопроизводительно и неэкономично из-за больших затрат трубного времени, требующегося для его перенастройки при различных режимах испытаний, близких к потере устойчивости и управляемости. Также, при срабатывании устройства, хвостовая часть модели ударяется о втулку и испытывает значительные нагрузки.

В качестве прототипа рассмотрим устройство для прекращения неуправляемого движения модели летательного аппарата при динамических испытаниях на трехстепенной опоре, содержащее вертикальную стойку в виде направляющей, на которой установлена каретка, снабженная приводом перемещения вдоль стойки, и ограничитель перемещения модели при возникновении неустойчивости [Oesterlin Wilfried, Kraftmessung bei einrm Nachmbrsystem far den Modell - hubschrauber - Schweibeflug, "Messtehn Briefe", 14, №3, 1978, 49-53]. Перемещение модели и каретки измеряются тензодатчиками, наклеенными на упругие измерительные пластины, которые вырабатывают сигнал обратной связи, поступающий на серводвигатели, ограничивающие или прекращающие движение модели при ее неуправляемом движения.

Поскольку управление захватом модели производится оператором в ручном режиме, это увеличивает время спасения и повышает вероятность поломки модели. Также принцип механического ограничения движения модели приводит к возникновению больших ударных нагрузках на модель в момент срабатывания устройства. Кроме того, устройство громоздко и не позволяет точно моделировать условия обтекания модели из-за искажения поля потока при испытаниях в аэродинамических трубах.

Техническим результатом является увеличение скорости срабатывания устройства, устранение действующих на модель ударных нагрузок, уменьшение влияния на обтекание потоком модели и повышение точности испытаний.

Технический результат достигается тем, что в устройстве для прекращения неуправляемого движения модели летательного аппарата при ее динамических испытаниях на устойчивость и управляемость, содержащем вертикальную стойку с трехстепенной опорой, в модели выполнен внутренний отсек с дном, установленным на пружине, и закрытым крышкой с замком, управляемым дистанционно, парашютом, прикрепленном к хвостовой части модели и помещенным во внутреннем отсеке, при этом безразмерная длина строп парашюта где lп - длина строп парашюта, ba - средняя аэродинамическая хорда крыла модели ЛА, находится в диапазоне от 3 до 5, а безразмерную площадь парашюта где Sп - площадь парашюта, S - площадь крала модели ЛА, определяют по формуле:

где - безразмерное расстояние от оси вращения до точки крепления парашюта, - величина безразмерного значения продольного момента инерции модели ЛА, где V∞ - скорость потока в АДТ, q=0,5ρV2 - величина скоростного напора, а ρ - плотность воздуха в АДТ.

На фиг. 1 изображена схема устройства.

На фиг. 2 приведены зависимости во времени изменения углов тангажа и крена модели при ее неустойчивом движении с и без применения устройства, полученные методом расчета.

Устройство состоит из модели 1, установленной на стойке 2 в потоке АДТ при помощи трехстепенной опоры 3. В модели выполнен внутренний отсек 4, с дном 5, установленным на пружине 6, и крышкой 7 с замком 8, управляемым дистанционно от пульта управления (на схеме не показан). В отсеке помещен парашют 9, прикрепленный к хвостовой части модели. При этом безразмерная длина строп парашюта , где lп - длина строп парашюта, ba - средняя аэродинамическая хорда крыла модели ЛА, находится в диапазоне от 3 до 5, а безразмерную площадь парашюта где Sп - площадь парашюта, S - площадь крала модели ЛА, определяют по формуле:

где - безразмерное расстояние от оси вращения до точки крепления парашюта, , - величина безразмерного значения продольного момента инерции модели ЛА, где V∞ - скорость потока в АДТ, q=0,5ρV2 - величина скоростного напора, а ρ - плотность воздуха в АДТ. Так, для аэродинамической модели летательного аппарата с ba=0,2 м, S=0,3 м2, JZ=0,05 кг м2, хп=0,4 м и параметрами потока в АДТ V= 20 м/с, ρ=1,25 кг/м3 длина строп парашюта может меняться в пределах , а площадь парашюта будет равна

Устройство работает следующим образом. При наличии набегающего потока в аэродинамической трубе и движении модели 1 относительно трех осей вращения, вследствие потери аэродинамической эффективности рулей управления, срыва потока с несущих поверхностей модели может возникнуть неуправляемое движение модели, сопровождающееся ее движением с большими амплитудами и скоростями. По сигналу с пульта управления, задаваемого оператором, или автоматически замок 8 освобождает крышку 7 отсека 4. Под действием пружины 6 дно 5 поднимает крышку 7 и выталкивает парашют 9, прикрепленный к хвостовой части модели, из отсека в поток АДТ. Парашют раскрывается в потоке. Усилие, создаваемое парашютом, заставляет модель развернуться по потоку, вследствие чего восстанавливается ее управляемое движение.

Эффективность предложенного устройства подтверждается результатами расчетного моделирования неуправляемого движения модели летательного аппарата на трехстепенной опоре в потоке АДТ и ее движения при срабатывании описанного устройства, представленными на фиг. 2. При выбрасывании парашюта амплитуда и скорость колебаний модели по углам тангажа и крена быстро убывает и становится равной нулю, модель прекращает неуправляемое движение и становится устойчивой и управляемой.

Таким образом, предлагаемое устройство для прекращения неуправляемого движения модели летательного аппарата в отличие от известных устройств позволяет практически мгновенно прекратить неуправляемое движение модели, при этом не оказывает ударных нагрузок на модель и вплоть до срабатывания не влияет на обтекание потоком модели, что повышает точность испытаний.

Устройство для прекращения неуправляемого движения модели летательного аппарата при ее динамических испытаниях на устойчивость и управляемость, содержащее вертикальную стойку с трехстепенной опорой, отличающееся тем, что в модели выполнен внутренний отсек с дном, установленным на пружине, и закрытым крышкой с замком, управляемым дистанционно, парашютом, прикрепленным к хвостовой части модели и помещенным во внутреннем отсеке, при этом безразмерная длина строп парашюта , где lп - длина строп парашюта, bа - средняя аэродинамическая хорда крыла модели ЛА, находится в диапазоне от 3 до 5, а безразмерную площадь парашюта , где Sп - площадь парашюта, S - площадь крыла модели ЛА, определяют по формуле:

,

где - безразмерное расстояние от оси вращения до точки крепления парашюта, , - величина безразмерного значения продольного момента инерции модели ЛА, где V - скорость потока в АДТ, q=0,5ρV2 _ величина скоростного напора, а ρ - плотность воздуха в АДТ.



 

Похожие патенты:

Изобретение относится к области авиации, в частности к средствам для проведения испытаний приводов и движителей летательных аппаратов. Стенд для определения характеристик электроприводов и движителей беспилотных летательных аппаратов содержит корпус стенда, основание с кронштейнами крепления электропривода и датчика крутящего момента.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, а также регулятор давления.

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах (АДТ), где требуется проведение исследований явлений аэроупругости.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, регулятор давления.

Изобретение относятся к области экспериментальной аэрогазодинамики. Универсальная рабочая камера Эйфеля аэрогазодинамической установки содержит рабочую камеру, источник модельного газа на ее входе, а на выходе камеры - диффузор.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для получения гиперзвукового потока газа в лабораторных условиях. Аэродинамическая труба содержит установленные симметрично с образованием общей форкамеры два дифференциальных мультипликатора давления, поршни которых выполнены ступенчатыми и установлены с возможностью перемещения навстречу друг другу.

Изобретение относится к экспериментальной аэродинамике, в частности к установкам для определения аэродинамических характеристик модели в аэродинамической трубе в присутствии неподвижного экрана.
Изобретение относится к экспериментальной аэродинамике, в частности к проведению исследований в аэродинамической трубе аэродинамических характеристик экранопланов, и может быть использовано для совершенствования аэрогидродинамических компоновок экранопланов.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано преимущественно при исследованиях аэродинамического обтекания моделей в аэродинамических трубах.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях. Заявленный способ включает зонный нагрев с помощью радиационных нагревателей наружной поверхности испытуемой конструкции, измерение температуры наружной поверхности контактными датчиками и управление нагревом по заданному температурному режиму по показаниям контактных датчиков. В процессе испытания измеряют электрическую мощность радиационных нагревателей и сравнивают ее с заранее определенной на предварительных испытаниях калориметрического макета испытуемой конструкции электрической мощностью. На участках заданного температурного режима с быстрым темпом нагрева, когда показания датчиков температуры отстают от реальных значений температуры поверхности, измеряемая электрическая мощность начинает превышать предварительно определенную на величину, определяемую опытным путем, управление процессом нагрева переключается с управления по заданной температуре на управление по предварительно определенной электрической мощности радиационных нагревателей. Это продолжается до того момента времени, пока разность показаний контактных датчиков и заданного температурного режима не станет меньше величины, определяемой опытным путем для каждого датчика температуры. После этого управление нагревом осуществляется по заданному температурному режиму. Технический результат изобретения - увеличение точности воспроизведения температурного режима неметаллической конструкции, имеющего место в полете в результате интенсивного аэродинамического нагрева, в процессе наземных тепловых и теплопрочностных испытаний. 3 ил.

Изобретение относится к технологиям автоматической идентификации базовой линии на изображении поверхностной сетке аэродинамического профиля для использования в моделировании. Техническим результатом является автоматизированное определение базовой линии аэродинамического профиля. Предложен компьютерно-реализованный способ определения базовой линии на поверхностной сетке аэродинамического профиля для использования в моделировании, причем поверхностная сетка содержит узлы, взаимосвязанные краями. Способ содержит этап, на котором осуществляют определение базовой системы координат, включающей в себя направление X относительно аэродинамического профиля. Также, согласно способу, осуществляют определение переменной по протяженности профиля, которая монотонно изменяется вдоль аэродинамического профиля по прямому направлению движения, которое не совпадает с направлением X. Далее выбирают первый фронтальный узел на базовой линии аэродинамического профиля. Используют алгоритм фронта Парето для определения базовой линии на оконечности поверхностной сетки относительно направления X аэродинамического профиля. 5 н. и 20 з.п. ф-лы, 13 ил.

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах и может быть использовано при динамических испытаниях моделей летательных аппаратов в аэродинамических трубах. Устройство состоит из модели, установленной на стойке в потоке АДТ при помощи трехстепенной опоры. В модели выполнен внутренний отсек, с дном, установленным на пружине, и крышкой с замком, управляемым дистанционно от пульта управления. В отсеке помещен парашют, прикрепленный к хвостовой части модели. Технический результат заключается в возможности практически мгновенно прекратить неуправляемое движение модели летательного аппарата при ее динамических испытаниях на устойчивость и управляемость, при этом не оказывает ударных нагрузок на модель и вплоть до срабатывания не влияет на обтекание потоком модели, что повышает точность испытаний. 2 ил.

Наверх