Навигационная система зондирования атмосферы



Навигационная система зондирования атмосферы
Навигационная система зондирования атмосферы

 


Владельцы патента RU 2613153:

Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат аэрологического радиозонда (АРЗ), направления и скорости ветра, повышении помехоустойчивости и электромагнитной совместимости. Указанный результат достигается за счет того, что навигационная система зондирования атмосферы содержит N передатчиков сигналов ГНСС, АРЗ, антенную систему приема сигналов ГНСС, антенную систему приема сигнала АРЗ с круговой диаграммой направленности, антенную систему приема сигнала АРЗ с узкой диаграммой направленности, снабженную угломестно-азимутальным приводом, антенный переключатель, базовую станцию с блоком отображения и ввода-вывода информации, сверхвысокочастотный (СВЧ) коммутатор, при этом антенная система приема сигналов ГНСС подключена к базовой станции, антенная система приема сигналов АРЗ с круговой диаграммой содержит антенну ближнего канала и антенну дальнего канала, выходы которых через переключатель и СВЧ-коммутатор подключены к базовой станции, соответственно выход базовой станции подключен к угломестно-азимутальному приводу антенной системы с узкой диаграммой направленности, выход которой через СВЧ-коммутатор подключен к базовой станции. Антенная система приема сигналов ГНСС обеспечивает точное определение координат базовой станции, антенная система приема сигналов АРЗ с круговой диаграммой направленности обеспечивает прием сигнала АРЗ при его вертикальном подъеме и удалениях до 250 км, антенная система с узкой диаграммой направленности обеспечивает прием сигнала АРЗ при удалениях более 250 км и сложной помеховой обстановке. 1 ил.

 

Изобретение относится к радиоэлектронике и может быть использовано при создании систем аэрологического зондирования атмосферы (САЗА), разрабатываемых на основе использования сигналов глобальной навигационной спутниковой системы (ГНСС) ГЛОНАСС/GPS/GALILEO для определения текущих координат аэрологического радиозонда (АРЗ), направления и скорости ветра, а также передачи координатной и телеметрической информации на наземную базовую станцию (БС) САЗА.

Общей проблемой производства и эксплуатации систем радиозондирования (CP) является создание высокоточных систем определения текущих координат АРЗ в пространстве, обеспечение надежного приема координатно-телеметрической информации с борта АРЗ на наземную станцию в оперативном радиусе действия CP, измерение метеорологических параметров атмосферы с необходимой точностью.

Известна система радиозондирования атмосферы (патент РФ на полезную модель №106758 «Система радиозондирования атмосферы на основе сигналов GPS/ГЛОННАС»). Система содержит передатчики навигационных сигналов системы GPS, передатчики навигационных сигналов системы ГЛОНАСС, аэрологический радиозонд, снабженный приемником навигационных сигналов систем GPS и ГЛОНАСС, первую, вторую и третью антенные системы, наземную базовую станцию с блоком отображения координатно-телеметрической информации. Первая антенная система обеспечивает дифференциальный режим работы СР. Вторая антенная система имеет круговую диаграмму направленности в азимутальной плоскости, равномерную диаграмму направленности в угломестной плоскости и обеспечивает прием сигналов АРЗ на частоте 403 мГц при его вертикальном подъеме в ближней зоне. Третья антенная система имеет круговую диаграмму направленности в азимутальной плоскости, узкую диаграмму направленности в угломестной плоскости и обеспечивает прием сигналов АРЗ на частоте 403 МГц в дальней зоне. Антенный переключатель обеспечивает быстрое соединение базовой станции со второй или третьей антенной.

Недостатком известной системы является низкая пространственная селекция сигнала радиозонда, недостаточная надежность сопровождения сигнала АРЗ при переключении антенн ближней и дальней зоны, недостаточная помехозащищенность от преднамеренных помех по каналам приема навигационных сигналов и сигналов радиозонда.

Известна система радиозондирования атмосферы (патент РФ на полезную модель №109297 «Система радиозондирования атмосферы GPS/ГЛОНАСС»). Наземная базовая станция принимает сигналы спутниковых радионавигационных систем ГЛОНАСС, GPS, GALILEO для определения своего местоположения и дифференциальных поправок. Также наземная базовая станция CP принимает сигналы навигационного радиозонда в диапазоне 403 МГц в ближней зоне на антенну с круговой диаграммой направленности в вертикальной и горизонтальной плоскостях. В дальней зоне прием осуществляется на антенну, обладающую направленными свойствами в вертикальной и горизонтальной плоскости.

Недостатком является возможность потери сигнала АРЗ при переключении антенны с круговой диаграммой направленности в вертикальной и горизонтальной плоскостях на антенну с узкой диаграммой направленности из-за провалов в диаграммах направленности.

Известна система радиозондирования атмосферы (патент РФ на изобретение №2480791 «Метеорологическая система»), Прототип, которая работает на основе использования сигналов спутниковых радионавигационных систем ГЛОНАСС/GPS/GALILEO. Наземная базовая станция системы радиозондирования принимает сигналы спутниковых радионавигационных систем ГЛОНАСС/GPS/GALILEO на первую антенну для определения местоположения и формирования дифференциальных поправок, на вторую антенну с круговой диаграммой направленности осуществляется прием сигнала навигационного радиозонда в диапазоне 403 МГц в ближней зоне. В дальней зоне прием сигнала навигационного радиозонда осуществляется на третью антенну с узкой диаграммой направленности в вертикальной и горизонтальной плоскостях.

Недостатками известных технических решений и прототипа является невозможность обеспечить устойчивый прием сигнала АРЗ наземным навигационным аэрологическим комплексом в средней и дальней зонах, обеспечить высокую пространственную селекцию и помехозащищенность получения метеорологической информации при постановке преднамеренных и непреднамеренных помех, создаваемых другими радиосистемами,

Недостатком прототипа является невозможность обеспечения надежного приема сигнала АРЗ при любых угловых положениях АРЗ в пространстве в оперативном радиусе действия комплекса при быстром переключении антенны ближнего канала и антенны с узкой диаграммой направленности на больших удалениях АРЗ, в том числе при постановке помех, создаваемых другими радиосистемами.

Технической задачей изобретения является обеспечение точной и надежной передачи информации с борта АРЗ на наземную станцию при любых угловых положениях АРЗ в пространстве в оперативном радиусе действия комплекса, обеспечение электромагнитной совместимости (ЭМС), повышение помехоустойчивости при постановке преднамеренных помех и помех, создаваемых другими радиосистемами.

Для решения поставленной задачи предлагается навигационная система зондирования атмосферы, содержащая N передатчиков сигналов глобальной навигационной спутниковой системы, аэрологический радиозонд, антенную систему приема навигационных сигналов, антенную систему приема сигнала аэрологического радиозонда с круговой диаграммой направленности, антенную систему приема сигналов аэрологического радиозонда с узкой диаграммой направленности, базовую станцию с блоком отображения и ввода-вывода информации, антенный привод, СВЧ-коммутатор, антенную систему приема навигационных сигналов, выполненную в виде последовательно соединенных антенны приема сигналов глобальной навигационной спутниковой системы и приемника сигналов глобальной навигационной спутниковой системы, выход которого подключен к первому входу базовой станции, причем выходы N передатчиков сигналов глобальной навигационной спутниковой системы первым радиоканалом связаны с входом антенны приема сигналов глобальной навигационной спутниковой системы и с входом аэрологического радиозонда, антенную систему приема сигналов аэрологического радиозонда с круговой диаграммой направленности, выполненную в виде двух параллельных ветвей, первая из которых - антенна ближнего канала, вход которой вторым радиоканалом связан с выходом аэрологического радиозонда, а выход подключен к первому входу первого малошумящего усилителя, а вторая - антенна дальнего канала, вход которой вторым радиоканалом связан с выходом аэрологического радиозонда, а выход подключен к первому входу второго малошумящего усилителя, при этом выходы первого и второго малошумящих усилителей соответственно подключены к первому и второму входам антенного переключателя, первый и второй выходы которого соединены соответственно с вторыми входами первого и второго малошумящих усилителей, третий выход переключателя соединен с первым входом СВЧ-коммутатора, первый выход которого подключен к третьему входу переключателя, а второй выход соединен с вторым входом базовой станции, первый выход которой соединен со вторым входом СВЧ-коммутатора, а второй и третий выходы подключены к первому и второму входам антенного привода, первый и второй выходы которого подключены соответственно к первому и второму входам антенной системы приема сигналов аэрологического радиозонда с узкой диаграммой направленности, выполненной в виде последовательно соединенных антенной решетки, вход которой вторым радиоканалом связан с выходом аэрологического радиозонда, сумматора и третьего малошумящего усилителя, первый выход которого связан с третьим входом СВЧ-коммутатора, третий выход которого соединен с вторым входом третьего малошумящего усилителя, при этом четвертый выход базовой станции подключен к первому входу блока отображения и ввода-вывода информации, первый выход которого соединен с третьим входом базовой станции, а второй выход - с потребителем метеорологической информации.

На фиг. 1 показана структурная схема навигационной системы аэрологического зондирования атмосферы (САЗА), на которой изображено: 1 - N передатчиков сигналов глобальной навигационной спутниковой системы (ГНСС) ГЛОНАСС/GPS/GALILEO; 2 - навигационный аэрологический радиозонд (АРЗ); 3 - антенная система приема сигналов ГНСС; 4 - антенная система с круговой неуправляемой диаграммой направленности (АКДН); 5 - антенная система с управляемой диаграммой направленности (АУДН); 6 - базовая станция (БС САЗА); 7 - блок отображения и ввода-вывода информации; 8 - антенный азимутально-угломестный привод АУДН; 9 - антенна приема сигналов ГНСС; 10 - антенна ближнего канала (АБК); 11 - антенна дальнего канала (АДК); 12 - антенная решетка АУДН; 13 - приемник сигналов ГНСС; 14 - малошумящий усилитель АБК (МШУ-1); 15 - малошумящий усилитель АДК (МШУ-2); 16 - сумматор антенной решетки; 17 - антенный переключатель АБК-АДК; 18 - малошумящий усилитель АУДН (МШУ-3); 19 - СВЧ-коммутатор сигналов АКДН-АУДН; 20 - потребитель метеорологических параметров атмосферы (МПА); РК-1 - N радиоканалов передачи навигационных сигналов ГНСС в диапазоне частот 1570-1610 МГц; РК-2 - радиоканал передачи координатно-телеметрической информации с борта АРЗ 2 на БС САЗА 7 в диапазоне 401-410 МГц.

Система аэрологического зондирования атмосферы имеет следующие соединения: N передатчиков ГНСС радиоканалами РК-1 связаны с антенной приема сигналов ГНСС 9 и АРЗ 2. Радиозонд АРЗ 2 радиоканалом РК-2 связан с антенной ближнего канала 10, антенной дальнего канала 11 и антенной решеткой 12. Выход приемника сигналов ГНСС 13 связан с первым входом базовой станции 6. Антенна АБК 10 через МШУ-1 14 связана с первым входом антенного переключателя 17, а антенна дальнего канала АДК 11 через МШУ-2 15 связана со вторым входом антенного переключателя АП 17. Первый выход АП 17 подключен к МШУ-1 14, второй выход АП 17 подключен МШУ-2 15. Третий выход АП 17 через первый вход СВЧ коммутатора 19 соединен с вторым входом базовой станции БС САЗА 6. Первый выход БС 6 подключен к второму входу СВЧ-коммутатора 19. Второй и третий выходы БС 6 подключены к входам антенного привода 8, первый и второй выходы которого подключены к первому и второму входам антенной системы с управляемой диаграммой направленности 5. Антенная решетка 12 через сумматор 16 и МШУ-3 18 подключена к третьему входу СВЧ-коммутатора 19, третий выход которого соединен со вторым входом МШУ-3 18. Четвертый выход БС 6 подключен к входу блок отображения и ввода-вывода информации (БОВВИ) 21, выход которого подключен к третьему входу БС 6. Выход блока отображения и ввода-вывода информации 7 соединен с потребителем метеорологической информации 20.

Навигационная система аэрологического зондирования атмосферы (САЗА) работает следующим образом. Косвенно в работе системы задействованы глобальные навигационные спутниковые системы (ГНСС) ГЛОНАСС/GPS и потребитель метеорологический информации 20. Навигационный аэрологический радиозонд АРЗ 2 осуществляет контактным методом с помощью датчиков измерение метеорологических параметров атмосферы (МПА). Приемное устройство АРЗ 2 принимает сигналы ГНСС по N радиоканалам РК-1, определяет свои пространственные координаты, которые в пакетном режиме передаются передатчиком АРЗ 2 по радиоканалу РК-2 с темпом один раз в 1-2 секунды (см. Патент РФ №125727). Радиосигнал поступает на вход одной из антенн САЗА, обрабатывается и далее подается на вход БС САЗА 6. Блок телеметрии АРЗ 2 (см. патент РФ №105477) с помощью датчиков определяет текущие метеорологические параметры атмосферы (МПА) - температуру, влажность, давление, которые в том же пакете передаются по РК-2 на БС САЗА 6. Один кадр пакета координатно-телеметрической информации передается за интервал времени 100-200 мсек.

Антенна 9 и приемное устройство 13 обеспечивают прием сигналов ГНСС для определения точного местоположения БС САЗА и проверки правильного функционирования АРЗ 2 перед выпуском в атмосферу.

Угловое положение АРЗ 2 относительно БС САЗА 6 в течение полета может быть любое. Поэтому для надежного приема сигналов АРЗ 2 антенный комплекс САЗА состоит из антенной системы 4 с круговой диаграммой направленности (ДН) в горизонтальной плоскости ближнего АБК 10 и дальнего каналов АДК 11. Сигнал АРЗ 2 предварительно усиливается в малошумящих усилителях МШУ-1 14, МШУ-2 15, МШУ-3 18. Диаграмма направленности АБК 10 имеет практически шарообразную форму, что позволяет обеспечить надежный прием сигнала АРЗ 2 при его вертикальном подъеме, раскачивании и любом угловом положении на удалениях до 30-50 км. При значительном горизонтальном удалении АРЗ 2 (более 50 км) с помощью антенного переключателя 17 по команде БС САЗА 6 подключается АДК 11, которая имеет круговую диаграмму направленности в горизонтальной плоскости и тороидальную диаграмму направленности в вертикальной плоскости. За счет тороидальной диаграммы направленности усиление АДК 11 больше усиления АБК 10 на 5-6 дБ, что обеспечивает прием сигнала АРЗ 2 на дальности до 200 км. Применение антенн АБК 10 и АДК 11 существенно упрощает эксплуатацию САЗА, поскольку не требует управления диаграммой направленности антенн. Далее через антенный переключатель АП 17 и СВЧ-коммутатор 19, которые управляются командами БС САЗА 6, сигнал АРЗ 2, усиленный МШУ-1 14 или МШУ-2 15, поступает на вход БС САЗА 6.

При сопровождении АРЗ на дальности до 250-350 км, а также для определения параметров приземного слоя атмосферы в области падения АРЗ применяется АУДН 5, которая имеет узкую игольчатую форму диаграммы направленности и усиление на 3-4 дБ больше усиления АДК 8. Кроме того, АУДН 5 обеспечивает за счет пространственной селекции повышение помехозащищенности канала приема сигналов АРЗ 2 при воздействии помех от других радиосистем. Подключение АУДН 5 осуществляется с помощью СВЧ-коммутатора 19 по команде БС САЗА 6. АУДН 5 содержит антенную решетку 12, сумматор 16 и МШУ-3 18. Наведение АУДН 5 на АРЗ 2 осуществляется по командам БС САЗА 6, которая обрабатывает информацию о пространственном положении АРЗ 2 и вырабатывает команды управления положением АУДН 5 по азимуту и углу места. Механическое управление пространственным положением диаграммы направленности АУДН 5 осуществляется азимутально-угломестным электромеханическим приводом 8 по командам, поступающим от БС САЗА 6.

Предложенная структура управления антеннами САЗА обеспечивает при необходимости в сложных условиях полета АРЗ быстрый поиск его сигнала путем переключения АБК 10, АБК 11, определения его координат для наведения АУДН 5, при подключении которой с помощью СВЧ-коммутатора обеспечивается максимально высокие потенциал и помехозащищенность радиоканала РК-2, следовательно наилучшее качество принимаемого сигнала АРЗ.

Обработка принятого сигнала АРЗ 2, содержащего координатно-телеметрическую информацию в виде цифрового пакета, осуществляется в БС САЗА 8, в которой обеспечивается демодуляция сигнала АРЗ 2, выделение из него потока координатной и телеметрической информации, осуществляется обработки метеорологических данных. Ввод команд управления САЗА, отображение и сохранение результатов радиозондирования атмосферы, выдача потребителю метеорологической информации 20 в стандартном виде (аэрологические телеграммы, таблицы, графики) осуществляется в блоке отображения и ввода-вывода информации 7.

Таким образом, предложенная навигационная система зондирования атмосферы позволяет существенно повысит тактико-технические и эксплуатационные характеристики отечественных навигационных CP:

- автосопровождение сигнала АРЗ осуществляется по сигналам ГНСС ГЛОНАСС/GPS/GALILEO. При этом обеспечивается высокая точность определения текущих координат АРЗ, направления и скорости ветра в оперативном радиусе действия САЗА не менее 350 км;

- упрощается режим запуска АРЗ, поскольку прием сигнала АРЗ в ближней зоне обеспечивается за счет антенн с круговой диаграммой направленности, не требующих управления диаграммой направленности;

- повышение помехоустойчивости обеспечивается за счет дополнительной пространственной селекция сигнала АРЗ антенной с узкой диаграммой направленности.

В целом, предлагаемое техническое решение позволяет повысить точность и надежность определения метеорологических параметров атмосферы, пространственных координат радиозонда, направления и скорости ветра, а также получение новых характеристик измеряемых параметров атмосферы, например турбулентности атмосферы. Также предлагаемое техническое решение позволяет повысить помехоустойчивость, ЭМС, обеспечить надежную передачу информации с борта АРЗ на наземную станцию в оперативном радиусе действия CP при постановке преднамеренных и непреднамеренных помех, создаваемых другими радиосистемами.

Навигационная система зондирования атмосферы, содержащая N передатчиков сигналов глобальной навигационной спутниковой системы, аэрологический радиозонд, антенную систему приема навигационных сигналов, антенную систему приема сигнала аэрологического радиозонда с круговой диаграммой направленности, антенную систему приема сигналов аэрологического радиозонда с узкой диаграммой направленности, базовую станцию с блоком отображения и ввода-вывода информации, антенный привод, отличающаяся тем, что дополнительно снабжена СВЧ-коммутатором, антенная система приема навигационных сигналов выполнена в виде последовательно соединенных антенны приема сигналов глобальной навигационной спутниковой системы и приемника сигналов глобальной навигационной спутниковой системы, выход которого подключен к первому входу базовой станции, выходы N передатчиков сигналов глобальной навигационной спутниковой системы первым радиоканалом связаны с входом антенны приема сигналов глобальной навигационной спутниковой системы и с входом аэрологического радиозонда, антенная система приема сигналов аэрологического радиозонда с круговой диаграммой направленности выполнена в виде двух параллельных ветвей, первая из которых - антенна ближнего канала, вход которой вторым радиоканалом связан с выходом аэрологического радиозонда, а выход подключен к первому входу первого малошумящего усилителя, а вторая - антенна дальнего канала, вход которой вторым радиоканалом связан с выходом аэрологического радиозонда, а выход подключен к первому входу второго малошумящего усилителя, при этом выходы первого и второго малошумящих усилителей соответственно подключены к первому и второму входам антенного переключателя, первый и второй выходы которого соединены соответственно с вторыми входами первого и второго малошумящих усилителей, третий выход переключателя соединен с первым входом СВЧ-коммутатора, первый выход которого подключен к третьему входу переключателя, а второй выход соединен с вторым входом базовой станции, первый выход которой соединен со вторым входом СВЧ-коммутатора, а второй и третий выходы подключены к первому и второму входам антенного привода, первый и второй выходы которого подключены соответственно к первому и второму входам антенной системы приема сигналов аэрологического радиозонда с узкой диаграммой направленности, выполненной в виде последовательно соединенных антенной решетки, вход которой вторым радиоканалом связан с выходом аэрологического радиозонда, сумматора и третьего малошумящего усилителя, первый выход которого связан с третьим входом СВЧ-коммутатора, третий выход которого соединен с вторым входом третьего малошумящего усилителя, при этом четвертый выход базовой станции подключен к первому входу блока отображения и ввода-вывода информации, первый выход которого соединен с третьим входом базовой станции, а второй выход - с потребителем метеорологической информации.



 

Похожие патенты:

Изобретение относится к радиотехнике и радиоэлектронике, предназначено для дистанционного зондирования атмосферы и может быть использовано в радиолокации, навигации и связи.

Изобретение относится к области радионавигации. Техническим результатом является сокращение времени первого определения местоположения, TTFF, в пользовательском оборудовании, определяющем положение с помощью Глобальной навигационной спутниковой системы, GNSS.
Изобретение относится к спутниковым навигационным системам, а именно к оборудованию наземного комплекса управления данных систем. Достигаемый технический результат - повышение надежности взаимодействия средств, обеспечивающих управление и измерение на пунктах эксплуатации и в центре управления.

Изобретение относится к области радиолокации и радионавигации. Достигаемый технический результат заключается в увеличении отношения сигнал/шум в результате совместной обработки сигнала стандартной и высокой точности системы ГЛОНАСС и уменьшении количества вычислений при синтезе радиолокационного изображения земной поверхности.

Изобретение относится к безопасности сетей. Технический результат - повышение уровня электронной связи и обеспечение безопасности сетей от несанкционированного доступа.

Изобретение относится к способу управления летательным аппаратом (ЛА) при заходе на посадку. Для управления ЛА при заходе на посадку измеряют с помощью инерциальной навигационной системы (ИНС), систем воздушных сигналов (СВС), спутниковой навигационной системы (СНС) курс, крен и тангаж ЛА, угловую, горизонтальную и вертикальную скорости ЛА, координаты и высоту ЛА, формируют курс взлетно-посадочной полосы (ВПП) на основе уточненных координат высоты ЛА и координат высоты ВПП, формируют сигналы управления угловым положением ЛА по крену и тангажу, измеряют в автоматическом или ручном режиме угловое положение ЛА в соответствии со сформированными сигналами управления, формируют траекторию посадки с заданным экипажем углом наклона, совпадающую по направлению с курсом ВПП, с помощью курсового, глиссадного и дальномерного радиомаяков (КРМ, ГРМ и ДРМ).

Изобретение относится к технике связи и может использоваться в системах для оценки местоположения объектов. Технический результат состоит в предоставлении пользователю приемного терминала спутникового сигнала, например сотового телефона или навигатора, услуги по определению местоположения без изменения аппаратного или программного обеспечения даже в зонах, недоступных для спутниковых сигналов, например внутри здания, в подземном торговом центре, в туннеле или метро.

Изобретение относится к области дифференциальных навигационных систем и применимо для высокоточной навигации, геодезии, ориентации объектов в пространстве по сигналам глобальных навигационных спутниковых систем (ГНСС - ГЛОНАСС, GPS, Galileo, Bei Dou и другие), в которых осуществляется измерение псевдодальности до навигационных спутников по фазе несущих колебаний.

Изобретение относится к области радионавигации. Техническим результатом является обеспечение улучшенной корректирующей информации для навигационных приемников (120) посредством разрешения целочисленных неоднозначностей в измерениях дальности, выполняемых опорными станциями, с использованием ограничений целочисленной неоднозначности двойной разности.

Изобретение относится к способам навигации по спутниковым радионавигационным системам (СРНС) и может быть использовано для идентификации параметров навигационных спутников и повышения точности определения координат навигационного приемника.

Изобретение относится к радиотехнике и радиоэлектронике, предназначено для дистанционного зондирования атмосферы и может быть использовано в радиолокации, навигации и связи.

Устройство предупреждения об аэрологических явлениях для летательного аппарата содержит бортовое оборудование, способное к выявлению метеорологических явлений, модуль для сбора и хранения метеорологических данных, модуль для создания сводки по собранным метеорологическим данным, модуль для отправки сводок, модуль для приема сводок от окружающих летательных аппаратов, модуль для обработки, консолидации принятых сводок и формированию предупреждений, модуль содействия обходу, модуль ввода, модуль интерактивного диалога, модуль для опроса окружающих летательных аппаратов и сбора от них данных.

Изобретение относится к области физики ионосферы и может быть использовано для пассивного определения ионосферных параметров. Сущность: выполняют двухчастотный прием спутниковых сигналов ГЛОНАСС/GPS.

Изобретение относится к способам дистанционных исследований атмосферы, основанных на использовании эффекта Доплера и применении фазоманипулированных сигналов, и может быть использовано для измерения скорости ветра.

Изобретение представляет собой способ и устройство для радиолокационного измерения полного вектора скорости движения метеорологического объекта на основе измерения составляющих этого вектора скорости в ограниченной области пространства, определяемой шириной диаграмм направленности антенны, за короткое время без сканирования.

Изобретение относится к метеорологии, в частности к дистанционным методам измерения характеристик атмосферы, и может быть использовано в автоматизированных системах определения опасных для авиации явлений погоды, а также в других областях человеческой деятельности, где необходимо знание о величине заряда частиц облаков и осадков.

Изобретение относится к радиотехнике и может быть использовано в системах определения местоположения источников грозовых разрядов в системах сбора и обработки метеорологической информации.

Изобретение относится к области радиотехники и может быть использовано в навигационных и метеорологических системах. Достигаемый технический результат - определение дальности до молниевых разрядов без ухудшения точностных характеристик и без увеличения габаритов устройства.
Изобретение относится к области морской гидрометеорологии и может быть использовано для определения дрейфа морских льдов. Сущность: следят за перемещением морских льдов, отображая на мониторе пути их перемещения.

Изобретение относится к способам обработки сигналов в радиолокационных станциях. Достигаемый технический результат - однозначное измерение дальности до метеорологического объекта (МО).

Изобретение относится к радиотехнике и может быть использовано при разработке малогабаритных носимых комплексов радиозондирования атмосферы. Технической результат состоит в снижении массогабаритных характеристик аппаратуры радиозондирования при сохранении точности получения вертикального профиля метеорологической информации. Для этого малогабаритная навигационная система радиозондирования атмосферы содержит навигационный аэрологический радиозонд - АРЗ- и созвездия спутников радионавигационных систем GPS/ГЛОНАСС, ГАЛЛИЛЕО, при этом система выполнена в радионавигационном режиме, для чего наземная часть системы содержит: первую и вторую приемные антенны, первый и второй радиоприемник, блок обработки координатной телеинформации - КТИ-АРЗ-, пульт управления и отображения этой телеинформации - П-КТИ, интерфейс ввода/вывода информации, блок выдачи полетного задания АРЗ и привод автоматического слежения со следующими соединениями: радиосигналы созвездий всех спутниковых радионавигационных систем. 1 ил.
Наверх