Способ стабилизации гироскопической платформы и устройство для его осуществления

Изобретения относятся к точному приборостроению, а именно к гироскопической технике, и могут быть использованы в гироскопических стабилизаторах. Способ стабилизации гироскопической платформы заключается в подаче сигнала с датчика угла прецессии гироскопа через усилитель стабилизации на стабилизирующий двигатель, при этом при настройке устойчивости контура стабилизации определяют фактический коэффициент контура стабилизации путем завала ротора гироскопа на известный угол с помощью подачи управляющего сигнала на датчик момента гироскопа при отключенном стабилизирующем двигателе, измеряя при этом напряжение на выходе усилителя стабилизации. Технический результат – повышение качества стабилизации и обеспечения необходимого запаса устойчивости системы. 2 н.п. ф-лы, 1 ил.

 

Изобретения относятся к точному приборостроению, а именно к гироскопической технике, и могут быть использованы в гироскопических стабилизаторах.

Известен способ [1] стабилизации гироскопической платформы путем компенсации внешнего момента, действующего по оси стабилизации, через стабилизирующий двигатель, управляемый от усилителя стабилизации, который, в свою очередь, управляется от напряжения, снимаемого с датчика угла прецессии гироскопа.

Недостатком данного способа является невозможность определения фактического коэффициента контура стабилизации, что не позволяет обеспечить необходимый запас устойчивости системы и качество стабилизации.

Известно устройство [2], содержащее управляемый трехстепенной гироскоп с датчиком угла и датчиками момента, датчики угла платформы, усилители стабилизации, двигатели стабилизации платформы.

Недостатком данного устройства является отсутствие возможности определения и регулировки коэффициента контура стабилизации, что не позволяет обеспечить необходимый запас устойчивости системы и качество стабилизации.

Наиболее близким к заявленному является способ [2], реализованный в гиростабилизаторе, который заключается в подаче сигнала с датчика угла гироскопа через усилители разгрузки на двигатели разгрузки. Кроме датчиков угла гироскоп имеет по каждой оси моментные датчики.

Недостатком данного способа является невозможность определения фактического коэффициента контура стабилизации, что не позволяет обеспечить необходимый запас устойчивости системы и качество стабилизации.

Наиболее близким к заявленному устройству является индикаторная гироскопическая платформа [3], содержащая гироскоп, датчики угла первого и второго канала гироскопа, первый и второй датчики момента первого канала гироскопа, первый и второй датчики момента второго канала гироскопа, входы управления платформы, датчики угла платформы, двигатели стабилизации платформы, первый и второй усилители стабилизации платформы.

Недостатком данного устройства является отсутствие возможности определения и регулировки коэффициента контура стабилизации, что не позволяет обеспечить необходимый запас устойчивости системы и качество стабилизации.

Технический результат заявленного изобретения заключается в повышении качества стабилизации и обеспечении необходимого запаса устойчивости системы.

Задачей, на решение которой направлены настоящие изобретения, является определение и регулировка коэффициента контура стабилизации гироскопической платформы.

Поставленная задача достигается тем, что в способе стабилизации гироскопической платформы, заключающемся в подаче сигнала с датчика угла прецессии гироскопа через усилитель стабилизации на стабилизирующий двигатель, согласно изобретению, при настройке устойчивости контура стабилизации определяют фактический коэффициент контура стабилизации путем завала ротора гироскопа на известный угол с помощью подачи управляющего сигнала на датчик момента гироскопа при отключенных стабилизирующих двигателях, измеряя при этом напряжение на выходе усилителя стабилизации.

В гироскопическую платформу, в состав которой входят гироскоп с датчиками угла и датчиками момента, входы управления платформы, датчики угла платформы, усилители стабилизации и стабилизирующие двигатели платформы, согласно изобретению, дополнительно введены переключатель включения-отключения стабилизирующих двигателей и регулировочные резисторы, с помощью которых устанавливают необходимое напряжение на выходе усилителя стабилизации.

К существенным отличиям предложенного способа стабилизации гироскопической платформы относится то, что при настройке устойчивости контура стабилизации определяют фактический коэффициент контура стабилизации. Рассматривая гиростабилизатор как систему автоматического регулирования, определение коэффициента контура стабилизации позволит обеспечить необходимый запас устойчивости системы и повысить качество стабилизации.

К существенным отличиям устройства относится введение в него переключателя включения-отключения стабилизирующих двигателей и регулировочных резисторов, позволяющих устанавливать коэффициенты контуров стабилизации согласно расчетным.

Предлагаемые изобретения представлены на фиг. 1, где представлены управляемый гироскоп УГ, датчики μ, ε угла гироскопа, датчики МД1, МД2 момента гироскопа, усилители У1, У2 стабилизации, регулировочные резисторы R1, R2, стабилизирующие двигатели Д1, Д2, переключатель S включения-отключения стабилизирующих двигателей, платформа П, входы Упр1, Упр2 управления платформой, датчики α, β угла платформы, стабилизируемая ось Z платформы.

Гироскоп устанавливается на гироплатформу таким образом, чтобы вектор кинетического момента гироскопа был в направлении вдоль стабилизируемой оси Z платформы. Это положение соответствует нулевым сигналам с датчиков μ, ε угла гироскопа. Сигнал с датчиков μ, ε усиливается усилителями У1, У2 и подается на стабилизирующие двигатели Д1, Д2.

Способ стабилизации гироскопической платформы осуществляется следующим образом. При отключенных двигателях Д1, Д2 стабилизации (переключатель S разомкнут) через вход Упр2 управления подают управляющий сигнал в датчик МД2 момента гироскопа, в результате чего ротор гироскопа под воздействием момента, создаваемого моментным датчиком МД2, начнет прецессировать вокруг оси X и коснется упора. В момент касания упора измеряют напряжение на выходе усилителя У2 и по формуле (1) определяют фактический коэффициент контура стабилизации по оси X.

где Кст.х - коэффициент контура стабилизации по оси X (В/град);

UУ2 - напряжение на выходе усилителя УР2 (В);

ε - известный угол, на котором находится упор (град).

Для определения коэффициента контура стабилизации по оси y (Кст.у), управляющий сигнал подают через вход Упр1 в датчик МД1 момента, при этом ротор гироскопа начнет прецессировать вокруг оси Y, в момент касания упора измеряют напряжение на выходе усилителя У1 и по формуле (2) определяют фактический коэффициент контура стабилизации по оси Y.

где Кст.у - коэффициент контура стабилизации по оси Y (В/град);

UУР1 - напряжение на выходе усилителя У1 (В);

μ - известный угол, на котором находится упор (град).

Устройство для осуществления способа стабилизации гироскопической платформы кроме переключателя S для включения-отключения стабилизирующих двигателей содержит регулировочные резисторы R1, R2, с помощью которых коэффициенты усиления контуров стабилизации через формулы (1), (2) устанавливаются согласно расчетным.

По окончании регулировки переключатель S замыкают.

Предложенные изобретения использованы в гиростабилизированной платформе и показали хорошие результаты.

Источники информации

1. В.А. Бессекерский, Е.А. Фабрикант. Динамический синтез систем гироскопической стабилизации. Судостроение, Ленинград, 1968 год, стр. 171, 172, 283, 284, рис. 6.1, рис. 9.1.

2. Гироскопические системы. Проектирование гироскопических систем (в двух частях), часть II, Гироскопические стабилизаторы под ред. Проф. Д.С. Пельпора. Москва, «Высшая школа», 1977 год, стр. 103, 104, 105, 115, 116, 133, 134, 135, рис. 3.1, рис. 3.6.

3. Патент РФ №2391630, G01C 19/44.

1. Способ стабилизации гироскопической платформы, заключающийся в подаче сигнала с датчика угла прецессии гироскопа через усилитель стабилизации на стабилизирующий двигатель, отличающийся тем, что при настройке устойчивости контура стабилизации определяют фактический коэффициент контура стабилизации путем завала ротора гироскопа на известный угол с помощью подачи управляющего сигнала на датчик момента гироскопа при отключенном стабилизирующем двигателе, измеряя при этом напряжение на выходе усилителя стабилизации.

2. Устройство для стабилизации гироскопической платформы, содержащей гироскоп с датчиками угла и датчиками момента, входы управления платформы, датчики угла платформы, усилители стабилизации и стабилизирующие двигатели платформы, причем датчики угла гироскопа через усилители стабилизации соединены с соответствующими стабилизирующими двигателями платформы, отличающееся тем, что в него дополнительно введены переключатель включения-отключения стабилизирующих двигателей и регулировочные резисторы, установленные в усилителях стабилизации.



 

Похожие патенты:

Изобретение относится к области гироскопии и может быть использовано для выставки в плоскость горизонта и на заданный азимут стабилизированной платформы (СП) трехосного гиростабилизатора (ТГС) системы управления ракет-носителей и разгонных блоков космического назначения, запускаемых со стартовых комплексов наземного базирования и морских платформ.

Изобретение относится к судовым системам ориентации и может найти применение в системах угловой ориентации устройств корабля с учетом статических и динамических деформаций корпуса корабля, а также ошибок установки систем на корабле.

Группа изобретений относится к установке и работе инерционных датчиков, таких как, например, датчики пространственного положения (гироскопы) или датчики движения (акселерометры) на борту транспортного средства.

Изобретение относится к области гироскопических систем и может быть использовано в навигационных системах. Технический результат - расширение функциональных возможностей.

Изобретение относится к области навигационного приборостроения и может быть использовано для определения положения платформы трехосного гиростабилизатора в азимуте, например, в высокоточных навигационных системах различного назначения.

Изобретение относится к системам автоматического регулирования, а конкретно к двухосным управляемым гиростабилизаторам оптической линии визирования, работающим на подвижных объектах и предназначенным для стабилизации и наведения линии визирования.

Способ коррекции дрейфа микромеханического гироскопа, используемого в системе дополненной реальности на движущемся объекте. Изобретение относится к области навигационного приборостроения.

Изобретение относится к области гироскопических систем и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения.

Азимутальная ориентация платформы трехосного гиростабилизатора по приращениям угла прецессии гироблока относится к области приборостроения и может быть использована для определения азимута, например, в высокоточных системах различного назначения.

Изобретение относится к области приборостроения и может быть использовано в высокоточных навигационных системах различного назначения для определения положения платформы трехосного гиростабилизатора в азимуте. Технический результат – расширение функциональных возможностей за счет обеспечения возможности определения азимутального положения гиростабилизированной платформы в условиях азимутальных смещений основания, а также сокращения времени и повышения точности определения азимута. Для этого измерения производятся в инерциальном управляемом режиме движения платформы относительно вертикальной оси и инерциальном режиме относительно двух или одной из горизонтальных осей. Перед началом измерений платформа горизонтируется точной системой приведения и грубо устанавливается и удерживается в требуемом исходном положении по азимуту. Затем система удержания платформы по азимуту и система точного приведения платформы в горизонт по двум или одной из горизонтальных осей отключается, а в датчик моментов азимутального гироблока подаются расчетные сигналы, увеличивающие скорость и угол поворота платформы по азимуту. Азимут исходного положения платформы определяют путем обработки сигналов с акселерометров об изменяющихся видимых уходах платформы относительно двух или одной горизонтальных осей, а также информации о видимых уходах по азимуту и об углах поворота гироскопов систем стабилизации платформы относительно двух или одной горизонтальных осей. 1 з.п. ф-лы.

Изобретение относится к гироскопической технике, а конкретно к двухосным гироскопическим стабилизаторам оптических элементов, работающим на подвижных объектах и предназначенным для стабилизации и управления оптическими элементами, и может найти применение в создании систем типа бинокль, перископ, лазерный дальномер. Заявленный гиростабилизатор оптических элементов, содержащий трехстепенной гироскоп, у которого во внешней рамке установлен гироузел, с которым кинематически шарнирно связан оптический элемент, и коррекционный двигатель, при этом оптический элемент представляет два зеркала, установленные во внешней рамке гироскопа симметрично относительно оси подвеса гироузла, а в кинематические шарнирные связи введены пружины, причем оси вращения зеркал параллельны оси подвеса гироузла, на котором с одной стороны в направлении оси ротора гиромотора установлена штанга с закрепленным на ее конце шарикоподшипнике, а на противоположном конце закреплена направляющая механического арретира, при этом шарикоподшипник штанги может перемещаться по направляющей бугеля, которая имеет П-образное сечение и средний радиус, равный длине штанги от центра подвеса гироузла до шарикоподшипника, при этом ось вращения бугеля находится в корпусе прибора и перпендикулярна оси подвеса внешней рамки. Технический результат состоит в увеличении угла обзора и угловых скоростей слежения с увеличением точности управления оптическими элементами с уменьшением массы и габаритов. 2 з.п. ф-лы, 7 ил.

Изобретение относится к системам автоматического управления и регулирования, в частности к гиростабилизирующим устройствам, и используется для обеспечения стабилизации поля зрения и управления линией визирования оптических приборов (прицелов), размещаемых на подвижных объектах военного назначения (ОВН) типа танков, БМП, БМД, БТР и т.п. Техническим результатом является повышение эксплуатационных возможностей за счет сохранения конструктивных установочных размеров в модернизируемом ОВН при установке на него нового прицельного комплекса (ПК) с независимой линией визирования (ЛВ), улучшение ремонтопригодности ОВН в условиях эксплуатации при установке модернизированного ПК с независимой ЛВ. Система стабилизации содержит прицельный комплекс с управляющей и силовой электроникой, связанной с внешним управляющим сигналом, датчики, двигатель, электрически связанный с первым выходом управляющей и силовой электроники, оптические узлы и механизмы. При этом система разделена на электроблок, размещенный в ОВН и содержащий управляющую и силовую электронику, и блок электромеханический, размещенный в прицельном комплексе, устанавливаемом на ОВН и содержащий датчики, двигатель, оптические узлы и механизмы, а также блок памяти и последовательный порт памяти. Элементы системы стабилизации соединены согласно блок-схеме на фиг. 1. 1 ил.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени определения азимута. Предложенный способ азимутальной ориентации платформы трехосного гиростабилизатора заключается в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока. При этом одновременно с определением разностного угла измеряют акселерометром угол отклонения платформы от горизонта, осуществляют дифференцирование измеренного угла, рассчитывают текущие значения тока компенсации, который после преобразования из цифровой формы в аналоговую подают на датчик моментов данного гироблока. 1 ил.

Группа изобретений относится к средствам для определения положения объектов в заданной системе координат. Инерциальный блок для закрепления на вращающемся узле транспортного средства, сочлененный с его силовым оборудованием, содержит по меньшей мере один датчик ускорения, и/или по меньшей мере один магнитометр, выполненный с возможностью определения угла наклона вращающегося узла, и/или по меньшей мере одно счетное устройство, выполненное с возможностью определения количества вращений вращающегося узла, и два гироскопа, выполненные с возможностью определения направления на уровне обода вращающегося узла в целях предоставления информации об углах для определения положения, при этом данные первого гироскопа умножаются на ряд синусов, а данные второго гироскопа умножаются на ряд косинусов, причем оба ряда выбираются таким образом, чтобы обеспечить максимально точное представление рядов значений акселерометра, и чтобы сумма ряда была равна нулю с максимально возможной точностью. Также предложено устройство, содержащее множество инерциальных датчиков, которое крепится к транспортному средству. Указанный инерциальный блок реализует соответствующий способ определения координат транспортного средства. Описанная выше группа изобретений позволяет с высокой точностью определять координаты транспортных средств. 3 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к области навигационного приборостроения и может быть использовано для создания прецизионных систем инерциальной навигации подвижных объектов. Опора карданова подвеса гиростабилизатора содержит стабилизирующий двигатель, преобразователь координат, цапфу оси подвеса, шарикоподшипник, редуктор, корпус, токоподвод коллекторного типа. Особенность конструкции опоры карданова подвеса гиростабилизатора состоит в том, что в нее введены: косозубое люфтовыбирающее колесо с фланцем, четыре люфтовыбирающие пружины, дополнительный фланец опоры, при этом шарикоподшипник выполнен в виде дуплексного шарикоподшипника, цапфа выполнена с косозубым зубчатым венцом, редуктор представляет собой два конических зубчатых колеса и червяк, который находится в зацеплении с косозубым венцом цапфы и косозубым венцом люфтовыбирающего колеса, токоподвод расположен внутри цапфы. Техническим результатом является повышение точности разворота рамок карданова подвеса, уменьшение массы и габаритов конструкции опоры, улучшение технологичности конструкции опоры карданова подвеса гиростабилизатора. 3 ил.

Изобретение относится к области навигации наземных транспортных средств и может найти применение в комплексной навигационной аппаратуре на основе аппаратуры счисления координат и спутниковой навигационной системы. Технический результат – повысить целостность системы навигации. Для этого автоматизированная система навигации с контролем целостности навигационных данных спутниковых радионавигационных систем состоит из аппаратуры счисления координат, в качестве основного элемента которой используется бесплатформенная инерциальная навигационная система (БИНС), оснащенной датчиком скорости механическим (ДСМ), датчиком скорости доплеровским (ДСД) и барометрическим высотомером (БВ), спутниковой навигационной аппаратуры (СНА), бортовой ЭВМ, выносного комплекса спутниковой навигационной аппаратуры (ВК СНА), устройства контроля качества (УКК) навигационных полей спутниковых систем и формирования корректирующей информации. Бесплатформенная инерциальная навигационная система (БИНС) оснащена вычислителем навигационных параметров (ВНП), выполненным с возможностью автоматического учета температурных поправок, а в качестве датчиков первичной информации БИНС используются инерциальные датчики: лазерные гироскопы (ЛГ) и кварцевые акселерометры (КА). Спутниковая навигационная аппаратура (СНА), основой которой является приемоиндикатор (ПИ), оснащена антенной системой (АС), состоящей из четырех антенных модулей (AM). Бортовая ЭВМ связана с барометрическим высотомером (БВ), состоящим, в свою очередь, из датчика температуры (ДТ), измерителя цифрового атмосферного давления (ИЦАД) и блока обработки данных (БОД), а через блок согласования (БС) - с датчиком скорости механическим (ДСМ) и датчиком скорости доплеровским (ДСД). Кроме того, она оснащена периферийными устройствами: клавиатурой (К), видеомонитором (ВМ), устройством документирования (УД), манипулятором графической информации (МГИ). Выносной комплекс спутниковой навигационной аппаратуры (ВК СНА), состоящий из носимого приемоиндикатора (НПИ) и антенны геодезической (АГ), оснащен переносным накопителем навигационной информации (ННИ). Бортовая ЭВМ связана по соответствующим каналам обмена и управления с вышеперечисленной аппаратурой, дополнительно - с аппаратурой передачи данных (АПД). При этом схема разрешения использования сигналов спутников (СРИСС) функционирует на основе алгоритма контроля целостности навигационного обеспечения спутниковых радионавигационных систем. В ее состав входят сумматор, пороговое устройство (ПУ) и ключевое устройство (КУ). 1 ил.
Наверх