Азимутальная ориентация платформы трехосного гиростабилизатора

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени определения азимута. Предложенный способ азимутальной ориентации платформы трехосного гиростабилизатора заключается в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока. При этом одновременно с определением разностного угла измеряют акселерометром угол отклонения платформы от горизонта, осуществляют дифференцирование измеренного угла, рассчитывают текущие значения тока компенсации, который после преобразования из цифровой формы в аналоговую подают на датчик моментов данного гироблока. 1 ил.

 

Изобретение относится к области гироскопических систем и может быть использовано для определения азимута, например в высокоточных системах различного назначения.

Известен способ азимутальной ориентации платформы трехосного гиростабилизатора (ТГС) по углу прецессии гироблока [1].

Этот способ заключается в том, что гироблок системы горизонтирования и стабилизации одной из горизонтальных осей трехосного гиростабилизатора, которая примерно направлена на север или юг, отключается от штатной системы горизонтирования и стабилизации, горизонтирование же и стабилизацию платформы относительно этой оси осуществляют по выходному сигналу акселерометра, а азимут платформы определяют с использованием информации с широкодиапазонного кодового датчика угла этого гироблока, который с момента отключения его от штатной системы горизонтирования начинает функционировать в режиме двухстепенного гирокомпаса и начинает поворачиваться под действием гироскопического момента, обусловленного горизонтальной составляющей угловой скорости вращения Земли, в сторону совмещения своего вектора кинетического момента с вектором ωГ.

Как следует из сути данного способа, использование широкодиапазонного датчика угла предполагает, что в начальный момент функционирования системы угол между вектором кинетического момента измерительного гироблока и вектором горизонтальной составляющей угловой скорости вращения Земли должен быть достаточно большим (в идеале близким к 90 град). Только в этом случае гироскопический момент, обусловленный горизонтальной составляющей угловой скорости вращения Земли, будет достаточно большим и за время, необходимое для определения азимута, вектор кинетического момента гироблока повернется на достаточно большой угол, что повышает информативность измеряемого сигнала. С этой целью одну из осей, связанных с платформой ТГС, перед началом измерений грубо приводят по азимуту к меридиану, например методом гирокомпасирования [2, с. 592].

Алгоритм определения азимута платформы ТГС строится на основе динамической модели гироскопа. Учитывая, что угол между векторами ωГ и Н близок к 90 град, модель гироскопа имеет следующий вид:

где

β - угол прецессии гироскопа, то есть угол между осью платформы ТГС, примерно направленной на север (юг), и осью чувствительности измерительного гироблока, измеряемый широкодиапазонным кодовым датчиком угла последнего;

I - момент инерции гироскопа;

ƒ - коэффициент демпфирования;

Н - кинетический момент;

ωГ - горизонтальная составляющая угловой скорости вращения Земли;

α - угол поворота оси платформы относительно Земли;

ωГБ - угловая скорость собственного ухода измерительного гироблока;

А - начальный азимут платформы;

Мвр - возмущающие воздействия, обусловленные влиянием нескомпенсированной скорости дрейфа платформы относительно вертикальной оси из-за наличия ошибок горизонтирования платформы ТГС.

Данное дифференциальное уравнение нелинейно, не имеет аналитического решения, и определить с высокой точностью на его основе искомый азимут в условиях действия на двухстепенной гироскоп различных внешних и внутренних возмущений НωГБ, Мвр, имеющих случайную природу, весьма затруднительно.

Наиболее близким по технической сущности изобретением является способ азимутальной ориентации платформы трехосного гиростабилизатора по приращениям угла прецессии гироблока [3].

В данном способе одновременно со считыванием информации с широкодиапазонного кодового датчика угла измерительного гироблока рассчитываются номинальные значения данного угла в вычислительном устройстве в соответствии с уравнением номинального движения, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими измеряемыми значениями его широкодиапазонного кодового датчика угла.

Номинальные значения угла прецессии гироблока βН определяются в соответствии с нелинейным дифференциальным уравнением номинального движения [3]:

Данное уравнение описывает изменение угла ВНβН при действии гироскопического момента, обусловленного горизонтальной составляющей угловой скорости вращения Земли ωГ, в предположении, что в начальный момент времени ось Хп платформы ТГС направлена точно на север, а направление оси чувствительности измерительного гироблока совпадает с направлением оси ХП, то есть при t=0: А=0 и β=0. При этом вредные возмущения Мвр отсутствуют.

Номинальные значения угла прецессии гироблока βН в соответствии с (2) могут быть рассчитаны одним из численных методов, например методом Рунге-Кутта [4, с. 417]. В этом случае уравнение (1) можно линеаризовать относительно уравнения (2) и использовать для определения начального азимута А оси ХП платформы ТГС хорошо известные методы оценок параметров линейных систем в условиях действия случайных возмущений, например оптимальный фильтр Калмана.

Однако с момента отключения выходного сигнала акселерометра от датчика моментов измерительного гироблока и подключения его к усилителю системы горизонтирования возникают низкочастотные колебания относительно соответствующей оси с угловой скоростью ωвозм.

На фиг. 1 представлена структурная схема широко применяемого для построения различных гироскопических систем трехосного гиростабилизатора с вертикальной осью подвеса наружной рамки [2, с. 301, 593] в режиме определения азимута, где обозначено:

1 - вычислительное устройство;

2 - корректирующий контур;

3, 19, 8 - датчики команд платформы ТГС относительно соответствующих осей X, Y, Z;

4, 7, 13 - датчики моментов соответствующих гироблоков 9, 5, 12;

5, 12, 9 - двухстепенные гироблоки системы стабилизации относительно соответствующих осей X, Y, Z;

6 - широко диапазонный кодовый датчик угла гироблока 5;

10, 14 - акселерометры системы горизонтирования платформы ТГС относительно соответствующих осей X, Z;

11, 16 - датчики углов соответственно гироблоков 9 и 12;

15, 23 - внутренняя и наружная ось ТГС соответственно;

21, 24, 17 - стабилизационные двигатели платформы ТГС относительно соответствующих осей X, Y, Z;

22, 18 - усилители системы стабилизации-горизонтирования относительно соответствующих осей X, Z;

20 - усилители системы стабилизации относительно оси Y;

- вектор кинетического момента соответствующего гироблока;

OXпYпZп - система координат, связанная с платформой ТГС;

ON - направление на север;

ωг - вектор горизонтальной составляющей угловой скорости вращения Земли;

А - азимут оси ХП платформы ТГС в момент начала измерений.

Данные низкочастотные колебания ωвозм., совпадающие с осью платформы ХП (фиг. 1), обусловлены различными причинами, основными из которых являются:

- переходный процесс в системе горизонтирования, обусловленный исключением гироблока Гх из системы горизонтирования;

- отработка системой горизонтирования возмущающих моментов относительно оси ХП платформы ТГС.

В свою очередь, угловая скорость ωвозм вызывает гироскопический момент относительно выходной оси измерительного гироскопа Гх:

Мгир.=Нωвозм.cosβ.

В результате уравнение (1) примет вид:

Данный возмущающий гироскопический момент не содержит информацию об азимуте оси платформы ТГС ХП и, в то же время, снижает точность определения азимута А, так как уже с момента отключения выходного сигнала акселерометра от датчика момента гироблока последний становится гирокомпасом и начинается процесс определения азимута по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока.

Целью настоящего изобретения является повышение точности и сокращение времени определения азимута оси платформы.

Для этого в процессе определения азимута платформы одновременно с определением разностного угла измеряют акселерометром Az (фиг. 1) угол отклонения платформы от горизонта, осуществляют его дифференцирование для получения текущих значений угловой скорости ωвозм, рассчитывают в вычислительном устройстве текущие значения тока для компенсации момента Мгир, входящего в исходное уравнение (3):

где iкомп - ток компенсации; β - угол на выходе широкодиапазонного кодового датчика угла гироблока; Кдм - коэффициент датчика моментов гироблока Гх.

После преобразования данного тока из цифровой формы в аналоговую его подают на датчик моментов измерительного гироблока (пунктирная линия на фиг. 1).

Процесс дифференцирования угла отклонения платформы от горизонта, определяемого с помощью акселерометра, можно осуществить различными способами, основными из которых являются:

- использование физически реализуемого дифференцирующего звена [5, с. 41-48];

- использование оптимального фильтра Калмана, в котором по измеряемому углу определяется оценка производной данного угла [6, с. 67].

Расчет тока компенсации может быть осуществлен в вычислительном устройстве ВУ, совмещенном с цифро-аналоговым преобразователем.

Таким образом, технически осуществимо одновременно с определением разностного угла измерение акселерометром угла отклонения платформы от горизонта, дифференцирование его и расчет текущих значений тока компенсации, которые после преобразования из цифровой формы в аналоговую подают на датчик моментов измерительного гироблока.

Источники информации

1. Патент RU 2324897 С1, 20.05.2008.

2. Командно-измерительные приборы / Под ред. Б.И. Назарова. - М.: МО СССР, 1987. - 638 с.

3. Патент RU 2509289 С2, 10.03.2014.

4. Дьяконов В.П. MATLAB 7.*/R2006/R2007. Самоучитель. М.: ДМК Пресс, 2008. - 768 с.

5. Ицхоки Я.С., Овчинников Н.И. Импульсные и цифровые устройства. - М.: «Советское радио», 1973. - 592 с.

6. Брамер К., Зифлинг Г. Фильтр Калмана-Бьюси. - М.: «Наука», 1982, - 200 с.

Азимутальная ориентация платформы трехосного гиростабилизатора, заключающаяся в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока, отличающаяся тем, что одновременно с определением разностного угла измеряют акселерометром угол отклонения платформы от горизонта, осуществляют дифференцирование измеренного угла, рассчитывают текущие значения тока компенсации, который после преобразования из цифровой формы в аналоговую подают на датчик моментов данного гироблока.



 

Похожие патенты:

Изобретение относится к системам автоматического управления и регулирования, в частности к гиростабилизирующим устройствам, и используется для обеспечения стабилизации поля зрения и управления линией визирования оптических приборов (прицелов), размещаемых на подвижных объектах военного назначения (ОВН) типа танков, БМП, БМД, БТР и т.п.

Изобретение относится к гироскопической технике, а конкретно к двухосным гироскопическим стабилизаторам оптических элементов, работающим на подвижных объектах и предназначенным для стабилизации и управления оптическими элементами, и может найти применение в создании систем типа бинокль, перископ, лазерный дальномер.

Изобретение относится к области приборостроения и может быть использовано в высокоточных навигационных системах различного назначения для определения положения платформы трехосного гиростабилизатора в азимуте.

Изобретения относятся к точному приборостроению, а именно к гироскопической технике, и могут быть использованы в гироскопических стабилизаторах. Способ стабилизации гироскопической платформы заключается в подаче сигнала с датчика угла прецессии гироскопа через усилитель стабилизации на стабилизирующий двигатель, при этом при настройке устойчивости контура стабилизации определяют фактический коэффициент контура стабилизации путем завала ротора гироскопа на известный угол с помощью подачи управляющего сигнала на датчик момента гироскопа при отключенном стабилизирующем двигателе, измеряя при этом напряжение на выходе усилителя стабилизации.

Изобретение относится к области гироскопии и может быть использовано для выставки в плоскость горизонта и на заданный азимут стабилизированной платформы (СП) трехосного гиростабилизатора (ТГС) системы управления ракет-носителей и разгонных блоков космического назначения, запускаемых со стартовых комплексов наземного базирования и морских платформ.

Изобретение относится к судовым системам ориентации и может найти применение в системах угловой ориентации устройств корабля с учетом статических и динамических деформаций корпуса корабля, а также ошибок установки систем на корабле.

Группа изобретений относится к установке и работе инерционных датчиков, таких как, например, датчики пространственного положения (гироскопы) или датчики движения (акселерометры) на борту транспортного средства.

Изобретение относится к области гироскопических систем и может быть использовано в навигационных системах. Технический результат - расширение функциональных возможностей.

Изобретение относится к области навигационного приборостроения и может быть использовано для определения положения платформы трехосного гиростабилизатора в азимуте, например, в высокоточных навигационных системах различного назначения.

Изобретение относится к системам автоматического регулирования, а конкретно к двухосным управляемым гиростабилизаторам оптической линии визирования, работающим на подвижных объектах и предназначенным для стабилизации и наведения линии визирования.

Группа изобретений относится к средствам для определения положения объектов в заданной системе координат. Инерциальный блок для закрепления на вращающемся узле транспортного средства, сочлененный с его силовым оборудованием, содержит по меньшей мере один датчик ускорения, и/или по меньшей мере один магнитометр, выполненный с возможностью определения угла наклона вращающегося узла, и/или по меньшей мере одно счетное устройство, выполненное с возможностью определения количества вращений вращающегося узла, и два гироскопа, выполненные с возможностью определения направления на уровне обода вращающегося узла в целях предоставления информации об углах для определения положения, при этом данные первого гироскопа умножаются на ряд синусов, а данные второго гироскопа умножаются на ряд косинусов, причем оба ряда выбираются таким образом, чтобы обеспечить максимально точное представление рядов значений акселерометра, и чтобы сумма ряда была равна нулю с максимально возможной точностью. Также предложено устройство, содержащее множество инерциальных датчиков, которое крепится к транспортному средству. Указанный инерциальный блок реализует соответствующий способ определения координат транспортного средства. Описанная выше группа изобретений позволяет с высокой точностью определять координаты транспортных средств. 3 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к области навигационного приборостроения и может быть использовано для создания прецизионных систем инерциальной навигации подвижных объектов. Опора карданова подвеса гиростабилизатора содержит стабилизирующий двигатель, преобразователь координат, цапфу оси подвеса, шарикоподшипник, редуктор, корпус, токоподвод коллекторного типа. Особенность конструкции опоры карданова подвеса гиростабилизатора состоит в том, что в нее введены: косозубое люфтовыбирающее колесо с фланцем, четыре люфтовыбирающие пружины, дополнительный фланец опоры, при этом шарикоподшипник выполнен в виде дуплексного шарикоподшипника, цапфа выполнена с косозубым зубчатым венцом, редуктор представляет собой два конических зубчатых колеса и червяк, который находится в зацеплении с косозубым венцом цапфы и косозубым венцом люфтовыбирающего колеса, токоподвод расположен внутри цапфы. Техническим результатом является повышение точности разворота рамок карданова подвеса, уменьшение массы и габаритов конструкции опоры, улучшение технологичности конструкции опоры карданова подвеса гиростабилизатора. 3 ил.

Изобретение относится к области навигации наземных транспортных средств и может найти применение в комплексной навигационной аппаратуре на основе аппаратуры счисления координат и спутниковой навигационной системы. Технический результат – повысить целостность системы навигации. Для этого автоматизированная система навигации с контролем целостности навигационных данных спутниковых радионавигационных систем состоит из аппаратуры счисления координат, в качестве основного элемента которой используется бесплатформенная инерциальная навигационная система (БИНС), оснащенной датчиком скорости механическим (ДСМ), датчиком скорости доплеровским (ДСД) и барометрическим высотомером (БВ), спутниковой навигационной аппаратуры (СНА), бортовой ЭВМ, выносного комплекса спутниковой навигационной аппаратуры (ВК СНА), устройства контроля качества (УКК) навигационных полей спутниковых систем и формирования корректирующей информации. Бесплатформенная инерциальная навигационная система (БИНС) оснащена вычислителем навигационных параметров (ВНП), выполненным с возможностью автоматического учета температурных поправок, а в качестве датчиков первичной информации БИНС используются инерциальные датчики: лазерные гироскопы (ЛГ) и кварцевые акселерометры (КА). Спутниковая навигационная аппаратура (СНА), основой которой является приемоиндикатор (ПИ), оснащена антенной системой (АС), состоящей из четырех антенных модулей (AM). Бортовая ЭВМ связана с барометрическим высотомером (БВ), состоящим, в свою очередь, из датчика температуры (ДТ), измерителя цифрового атмосферного давления (ИЦАД) и блока обработки данных (БОД), а через блок согласования (БС) - с датчиком скорости механическим (ДСМ) и датчиком скорости доплеровским (ДСД). Кроме того, она оснащена периферийными устройствами: клавиатурой (К), видеомонитором (ВМ), устройством документирования (УД), манипулятором графической информации (МГИ). Выносной комплекс спутниковой навигационной аппаратуры (ВК СНА), состоящий из носимого приемоиндикатора (НПИ) и антенны геодезической (АГ), оснащен переносным накопителем навигационной информации (ННИ). Бортовая ЭВМ связана по соответствующим каналам обмена и управления с вышеперечисленной аппаратурой, дополнительно - с аппаратурой передачи данных (АПД). При этом схема разрешения использования сигналов спутников (СРИСС) функционирует на основе алгоритма контроля целостности навигационного обеспечения спутниковых радионавигационных систем. В ее состав входят сумматор, пороговое устройство (ПУ) и ключевое устройство (КУ). 1 ил.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени определения азимута. Предложенный способ азимутальной ориентации платформы трехосного гиростабилизатора заключается в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока. При этом одновременно с определением разностного угла измеряют акселерометром угол отклонения платформы от горизонта, осуществляют дифференцирование измеренного угла, рассчитывают текущие значения тока компенсации, который после преобразования из цифровой формы в аналоговую подают на датчик моментов данного гироблока. 1 ил.

Наверх