Способ формирования маршрута носителя пеленгатора

Изобретение относится к авиационной технике и может быть использовано в бортовой пассивной РЛС и автоматической системе управления самолета. Достигаемый технический результат - формирование маршрута носителя пеленгатора, определяющего местоположение излучателя, при котором достигается необходимая точность и носитель в конце маршрута оказывается на заданном расстоянии от излучателя в конечной точке маршрута. Указанный результат достигается за счет того, что в начальной точке маршрута на носителе пеленгатором измеряют пеленг неподвижного излучателя относительно носителя пеленгатора, затем носитель пеленгатора перемещается из начальной точки под углом θопт относительно направления на излучатель, где θопт есть решение выражения T(DR,θ)→min, где T(DR,θ) - время определения дальности до излучающего объекта, DR - необходимая дисперсия ошибки определения дальности до излучателя, θ - угол между вектором путевой скорости и направлением на излучатель, при этом в процессе движения носителя непрерывно измеряется пеленгатором пеленг излучателя, пройденное носителем расстояние измеряется автономной навигационной системой носителя, кроме этого в момент, когда дисперсия ошибки определения дальности D до излучателя станет равной необходимому значению DR, по совокупности полученных измерений пеленга излучателя и координат носителя определяется дальность до цели и конечная точка маршрута, при этом конечную точку формируемого маршрута носителя пеленгатора определяют из одновременного выполнения двух условий: D≤DR и R≤Rзад, где R - оценка дальности до излучателя относительно носителя, Rзад - заданное расстояние от носителя до излучателя в конечной точке маршрута. 2 ил.

 

Изобретение относится к авиационной технике и может быть использовано в бортовой пассивной РЛС и автоматической системе управления самолета.

Известен способ формирования маршрута носителя пеленгатора, определяющего местоположение неподвижного излучателя (патент RU №2373549, 20.11.2009, заявка №2008121681, 28.05.2008 г.), взятый в качестве прототипа. Сущность прототипа заключается в том, что в способе, при котором в начальной точке маршрута на носителе пеленгатором измеряют пеленг неподвижного излучателя относительно носителя пеленгатора, затем носитель пеленгатора перемещается из начальной точки под углом θопт относительно направления на излучатель, где θопт есть решение выражения T(DR,θ)→min, где T(DR,θ) - время определения дальности до излучающего объекта, DR - необходимая дисперсия ошибки определения дальности до излучателя, θ - угол между вектором путевой скорости и направлением на излучатель, при этом в процессе движения носителя непрерывно измеряется пеленгатором пеленг излучателя, пройденное носителем расстояние измеряется автономной навигационной системой носителя, кроме этого в момент, когда дисперсия ошибки определения дальности D до излучателя станет равной необходимому значению DR, по совокупности полученных измерений пеленга излучателя и координат носителя определяется дальность до цели, при этом путь от начальной точки движения носителя до точки когда D=DR является формируемым маршрутом носителя пеленгатора (фиг. 1).

Недостатком указанного способа является низкая вероятность вывода носителя на заданное расстояние от излучателя в конечной точке маршрута.

Техническим результатом предлагаемого способа является определение местоположения источника излучения с точностью не хуже заданной и выводом носителя пеленгатора на заданное расстояние от излучателя в конечной точке маршрута.

Указанный технический результат достигается тем, что в известном способе, при котором в начальной точке маршрута на носителе пеленгатором измеряют пеленг неподвижного излучателя относительно носителя пеленгатора, затем носитель пеленгатора перемещается из начальной точки под углом θопт относительно направления на излучатель, где θопт есть решение выражения T(DR,θ)→min, где T(DR,θ) - время определения дальности до излучающего объекта, DR - необходимая дисперсия ошибки определения дальности до излучателя, θ - угол между вектором путевой скорости и направлением на излучатель, при этом в процессе движения носителя непрерывно измеряется пеленгатором пеленг излучателя, пройденное носителем расстояние измеряется автономной навигационной системой носителя, кроме этого в момент, когда дисперсия ошибки определения дальности D до излучателя станет равной необходимому значению DR, по совокупности полученных измерений пеленга излучателя и координат носителя определяется дальность до цели и конечная точка маршрута, согласно изобретению конечную точку формируемого маршрута носителя пеленгатора определяют из одновременного выполнения двух условий: D≤DR и R≤Rзад, где R - оценка дальности до излучателя относительно носителя, Rзад - заданное расстояние от носителя до излучателя в конечной точке маршрута.

Сущность изобретения заключается в следующем (фиг. 2). Носитель пеленгатора движется с постоянным бортовым пеленгом излучателя θ, который отсчитывается относительно направления путевой скорости V. При таком движении носитель пеленгатора описывает логарифмическую спираль, сближаясь с излучателем. Максимальная скорость носителя ограничивается его техническими характеристиками, поэтому считаем путевую скорость V фиксированной. На носителе с помощью пеленгатора непрерывно измеряют пеленг неподвижного излучателя относительно носителя пеленгатора, при этом собственные координаты носителя измеряют автономной навигационной системой носителя. В процессе движения по совокупности полученных измерений пеленга излучателя и координат носителя одним из известных способов получают оценку дальности R излучателя относительно носителя. По известному местоположению носителя, измеренным пеленгу излучателя и дальности до него становится известным местоположение излучателя на плоскости.

Заданное расстояние от носителя до излучателя в конечной точке маршрута представляет собой заданное значение Rзад, являющиеся максимально допустимым расстоянием от носителя до излучателя в конечной точке маршрута.

Новизна предложенного способа состоит в том, что при получении точности не хуже заданной в конечной точке маршрута носитель оказывается на изначально известном расстоянии от излучателя. Отличие от прототипа заключается в том, что конечной точкой формируемого маршрута носителя пеленгатора является точка, принадлежащая заданной области.

Способ может быть реализован, например, с помощью аппаратуры носителя, включающей в себя: пеленгатор, автономную навигационную систему носителя, бортовую цифровую вычислительную машину.

Таким образом, предложенный способ позволяет сформировать маршрут носителя пеленгатора, определяющего местоположение излучателя, при котором достигается необходимая точность и носитель в конце маршрута оказывается на заданном расстоянии от излучателя. Этот способ полезен для решения задачи выхода летательных аппаратов в зону поражения целей и при проведении спасательных операций, когда необходимо выйти в зону поиска.

Способ формирования маршрута носителя пеленгатора, основанный на определении местоположения излучателя с выводом носителя на заданное расстояние от излучателя в конечной точке маршрута, при котором в начальной точке маршрута на носителе пеленгатором измеряют пеленг неподвижного излучателя относительно носителя пеленгатора, затем носитель пеленгатора перемещается из начальной точки под углом θопт относительно направления на излучатель, где θопт есть решение выражения T(DR,θ)→min, где T(DR,θ) - время определения дальности до излучающего объекта, DR - необходимая дисперсия ошибки определения дальности до излучателя, θ - угол между вектором путевой скорости и направлением на излучатель, при этом в процессе движения носителя непрерывно измеряется пеленгатором пеленг излучателя, пройденное носителем расстояние измеряется автономной навигационной системой носителя, кроме этого в момент, когда дисперсия ошибки определения дальности D до излучателя станет равной необходимому значению DR, по совокупности полученных измерений пеленга излучателя и координат носителя определяется дальность до цели и конечная точка маршрута, отличающийся тем, что конечную точку формируемого маршрута носителя пеленгатора определяют из одновременного выполнения двух условий: D≤DR и R≤Rзад, где R - оценка дальности до излучателя относительно носителя, Rзад - заданное расстояние от носителя до излучателя в конечной точке маршрута.



 

Похожие патенты:

Изобретение относится к системной интеграции судовых и береговых навигационных средств. Технический результат – высокоскоростной обмен данными в диапазонах KB и УКВ.

Изобретение относится к области навигации и может быть использовано при построении различных систем локации, предназначенных для навигации летательных аппаратов (ЛА).

Изобретение относится к радиотехнике и может быть использовано для определения координат наземных источников радиоизлучения (ИРИ) при радиопеленговании с борта летательного аппарата (ЛА).

Изобретение относится к радиотехнике, а именно к способам определения местоположения источников радиоизлучения, и может быть использовано при построении систем определения местоположения станции сетей связи VSAT.

Изобретение относится к системам определения географического местоположения. Техническим результатом является повышение точности определения местоположения.

Изобретение относится к радиотехнике и может использоваться в системах определения местоположения. Технический результат состоит в повышении точности определения временных изменений при повторной передаче.

Устройство предназначено для определения путевых информаций (FI), которые относятся к отрезку пути (14), который проехал пассажир. Устройство содержит носимый пассажиром приемный блок (16) для приема сигнала, который генерируется наземным, связанным с определенным местоположением передающим блоком (24, 28), и вычислительный блок (32) для определения путевой информации посредством оценки сигнала, при которой оценивается по меньшей мере одна сигнальная характеристика принятого сигнала.

Изобретение относится к радиотехнике и может использоваться для обеспечения коммуникации мобильных абонентов и определения их местоположения. Технический результат состоит в том, что изобретение позволяет при плохой видимости спутников назначать ретрансляторы из навигационно-связных терминалов мобильных абонентов, которые могут стать источником локального навигационного поля.
Изобретение относится к технике связи и может использоваться для определения пространственных координат стационарного или подвижного передающего радиосигнал объекта.

Изобретение относится к области навигации по сигналам космических аппаратов глобальных радионавигационных спутниковых систем и может быть использовано для определения угловой ориентации летательного аппарата в пространстве.

Изобретение относится к области спутниковой навигации и может быть использовано для определения углового положения объектов в пространстве или на плоскости в условиях воздействия преднамеренных широкополосных помех. Технический результат заключается в повышении помехоустойчивости угломерной навигационной аппаратуры потребителей. Указанный результат достигается путем компенсации межканальной задержки сигналов, выравнивания группового времени запаздывания и дальнейшего компенсационного цифрового суммирования преднамеренных помех в соответствии с рекуррентным алгоритмом формирования весовых коэффициентов для каждой линии задержки. 5 ил.

Изобретение относится к области навигации движущихся объектов и может быть использовано при построении различных систем локации, предназначенных для определения местоположения движущихся объектов (ДО), управления их движением и обеспечения навигации ДО. Достигаемый технический результат - повышение точности навигации. Указанный результат достигается за счет того, что используют эталонную карту местности как априорную информацию о навигационном поле, выбирают участок местности (мерный участок), находящийся в пределах эталонной карты, составляют текущую карту путем вычисления плановых координат мерного участка на основе измерений дальностей с помощью многолучевого режима измерения при помощи радиоволн, находящихся в одной плоскости, и излучаемых в виде лучей, из которых первым излучают центральный, а потом - левый и правый боковые относительно центрального, при этом центральный луч перпендикулярен направлению движения движущихся объектов, плоскость лучей повернута вокруг центрального луча на угол равный 45 градусов относительно направления движения движущихся объектов, определяют разности результатов многолучевых измерений наклонных дальностей, определяют углы эволюции движущихся объектов по азимуту, крену и тангажу в динамике на основе анализа значений спектра доплеровских частот, возникающих при измерениях дальностей по каждому лучу, причем для анализа значений доплеровских частот используют массив значений средних доплеровских частот для каждого строба дальности по каждому лучу, полученный по измерениям спектров доплеровских частот для каждого луча, значение и знак углов азимута, крена и тангажа при каждом цикле измерений дальностей определяют изменением положения измеренного массива средних доплеровских частот относительно массива средних доплеровских частот, соответствующего нулевым значениям углов азимута, крена и тангажа, сравнивают значения плановых координат текущей и эталонной карт, вычисляют слагаемые показателя близости для всех возможных положений движущегося объекта, проводят поиск экстремума показателя близости, вычисляют высоты движущихся объектов в координатах мерного участка в точке определения местоположения движущихся объектов в плановых координатах мерного участка, вычисляют сигнал коррекции траектории движения, управляют движением движущихся объектов путем коррекции их местоположения по трем координатам эталонной карты (плановые координаты и высота) в координатах мерного участка за время движения движущихся объектов над мерным участком. 10 ил.

Настоящее изобретение относится к области подводной навигации и может быть использовано для определения начальных координат автономного необитаемого подводного аппарата (АНПА) после отправки его с обеспечивающего судна для выполнения заданной миссии подо льдами в высоких арктических широтах. Задача изобретения состоит в обеспечении проведения эффективных подледных исследований в высоких арктических широтах с помощью АНПА. Технический результат заключается в уменьшении погрешности оценки начальных координат АНПА. Предложены способ и устройство для определения начальных координат АНПА. Устройство состоит из обеспечивающего судна, телеуправляемого необитаемого подводного аппарата, автономного необитаемого подводного аппарата, первой радиоприемной антенны, первого радионавигационного приемника, второй радиоприемной антенны, второго радионавигационного приемника, гидроакустической антенны гидроакустической навигационной системы с ультракороткой базы (ГАНС-УКБ), аппаратуры ГАНС-УКБ, первого бортового вычислителя, системы управления, второго бортового вычислителя, гидроакустической антенны первой гидроакустической аппаратуры передачи информации (ГАПИ), первой ГАПИ, гидроакустического маяка-ответчика, гидроакустической антенны второй ГАПИ, второй ГАПИ, гидролокатора секторного обзора, датчика глубины, доплеровского гидроакустического лага, системы коррекции и управления. 2 ил.

Система для определения местоположения самолетов, потерпевших катастрофу, содержит «черный ящик» с сигнализацией, помещенный в хвосте самолета, приемник GPS-сигналов, генератор электромагнитных волн и пункт контроля. «Черный ящик» содержит блок генераторов звука и электромагнитных волн, блок питания, рычаг-переключатель, камеру сжатого воздуха, резиновую камеру типа тора, парашют, гибкую антенну, нишу, звукоизлучатель, кабель-трос, разъем. Приемник GPS-сигналов содержит дуплексер, приемопередающую антенну, удвоитель фазы, два узкополосных фильтра, делитель фазы на два, фазовый детектор, вычислительный блок, соединенные определенным образом. Генератор электромагнитных волн содержит формирователь модульного кода, линию задержки, сумматор, генератор псевдослучайной последовательности, фазовый манипулятор, усилитель мощности, соединенные определенным образом. Пункт контроля содержит измерительный канал и четыре пеленгационных канала. Измерительный канал содержит приемную антенну, усилитель высокой частоты, смеситель, гетеродин, блок поиска, усилитель промежуточной частоты, удвоитель фазы, два анализатора спектра, блок сравнения, пороговый блок, линию задержки, ключ, фазовый детектор, делитель фазы на два, узкополосный фильтр. Каждый пеленгационный канал содержит приемную антенну, усилитель высокой частоты, перемножитель, узкополосный фильтр, фазометр. Дополнительно пункт контроля содержит три вычитателя, три сумматора, два фазометра, блок регистрации, соединенные определенным образом. Обеспечивается точность определения местоположения «черного ящика». 9 ил.

Изобретение относится к радиотехнике и предназначено для определения взаимного местоположения подвижных объектов и позволяет повысить помехоустойчивость, точность в полносвязных радиосетях за счет систем вычисления взаимных скоростей и ускорений. Способ определения взаимного местоположения основан на том, что на каждом объекте формируют запросные сигналы, измеряют задержку распространения радиосигналов и величины корреляционных откликов, соответствующие этим измерениям внутри каждой пары объектов, по окончании кадра полносвязного обмена измеренной информацией на каждом объекте вычисляют взаимные дальности между всеми объектами, используя задержки, измеренные при наибольшей величине автокорреляционных откликов, вычисляют взаимные скорости и ускорения. 1 ил.

Изобретение относится к области радиолокации и радионавигации в части их использования для определения дальности и радиальной скорости объекта, излучающего электромагнитные волны. Достигаемый технический результат - повышение надежности определения дальности и радиальной скорости объекта путем снижения числа измеряемых параметров и снижением зависимости результата измерения от помех, связанных с атмосферными явлениями и техногенными факторами. Указанный результат достигается тем, что для определения дальности и радиальной скорости движущегося объекта необходимо провести только измерения частоты смены максимумов и минимумов интенсивности результата пространственного преобразования Фурье электромагнитной волны излучаемой объектом, которая принимается преобразователем Фурье. Дальность и радиальная скорость объекта вычисляется по соотношениям, содержащим данные по частоте и ее производной по времени. При этом объект находится в диапазоне расстояний, соответствующих критерию действия дифракции Френеля. 6 ил.

Изобретение относится к области радионавигации и может быть использовано в системах определения местоположения и слежения за траекторией перемещающихся в надземном пространстве объектов по сигналам навигационных бесспутниковых систем, использующих RFID-технологию. Достигаемый технический результат – обеспечение навигационного обслуживания в зоне, содержащей радиочастотные метки при произвольных траекториях движения пользователя. Указанный результат достигается за счет того, что радиочастотные метки устанавливаются на дорожных знаках, светофорах, столбах, деревьях, зданиях и сооружениях, а также других искусственных объектах и подходящих для этого объектах неживой природы, при этом их информационные данные, характеризующие уникальность расположения каждой метки, противопоставляются аналогичным данным, нанесенным на электронную карту местности и/или хранящимся ее в базе данных. Координаты меток назначаются относительно установленных границ города или другого населенного объекта, района, региона, области, административной единицы или государства путем построения координатной сетки, где самая южная точка границы имеет нулевое значения численного индекса (числа) при позиции, обозначенной одной буквой алфавита, западная - при позиции, обозначенной другой буквой алфавита. Координаты остальных меток, следующих за меткой (метками) с нулевым индексом при любой из двух буквенных позиций, получаются добавлением, например, единицы к индексам позиций меток. Координаты меток учитывают запрещающие и предписывающие знаки дорожного движения, располагающиеся на перекрестках, ответвлениях и разветвлениях дороги, непосредственно там, где они установлены, а также на соседних перекрестках, ответвлениях и разветвлениях. Прокладывание маршрута движения объекта осуществляется соединением ближайших меток (метки) от исходного пункта, в котором находится пользователь, до ближайшей к искомому пункту метки (меток) через все лежащие между ними метки с последующим выбором минимального расстояния. 4 з.п. ф-лы, 3 ил.

Изобретение относится к способам с использованием двойной метки для определения местоположения движущихся объектов в шахте. Достигаемый технический результат – повышение точности определения местоположения движущегося объекта в шахте. Указанный результат достигается за счет того, что высокоточный способ определения местоположения с использованием двойной метки включает в себя способ определения местоположения движущегося объекта первого типа в шахте и способ определения местоположения движущегося объекта второго типа в шахте; способ включает в себя этапы, на которых: осуществляют установку двух меток определения местоположения по горизонтали или по вертикали на движущемся объекте и выполняют их с возможностью осуществления связи с двумя базовыми станциями определения местоположения, установленными вдоль потолка выработки, и получают местоположение движущегося объекта в реальном времени с помощью построения функции оптимизации между расстоянием, определенным по показателю уровня принимаемого сигнала, и расчетным расстоянием между меткой и базовой станцией определения местоположения и поиска минимального значения; решают функцию оптимизации с помощью итерационного процесса, включающего этап определения начального итерационного значения и шага итерации в левом/правом направлении. Способ применим для определения местоположения объектов с профилем в виде полосы, параллельным плоскости выработки (например, шахтная тележка или врубовая машина), или объектов с профилем в виде полосы, перпендикулярным плоскости выработки (например, рабочий). 1 з.п. ф-лы, 2 ил.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Достигаемый технический результат - определение КМПИРИ одним постом радиоконтроля (РКП) и n, равно или более двух, виртуальных постов (ВП) без применения пеленгаторов и радиоприемников с автокорреляторами. В основе способа лежит энергетический принцип, заключающийся в измерении (или вычислении) напряженности поля ИРИ и в нескольких точках пространства с известными координатами их местоположения. При этом напряженность поля ИРИ на РКП измеряют, а в дополнительной точке (точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого и параметры его виртуальной антенны (диаграмма направленности и высота подвеса) задаются. При использовании n ВП они «размещаются» не на одной прямой с РКП и «отстоят» от него по широте и (или) по долготе на несколько угловых минут. Вычисление напряженности на ВП основано на принципе корреляционной зависимости (КЗ) напряженностей полей, создаваемых в заданном диапазоне частот множеством источников радиоизлучения, находящихся, согласно базе данных, в зоне электромагнитной доступности РКП и вычисляемых как для РКП, так и для всех заданных ВП по определенной программе. 1 з.п. ф-лы, 7 ил., 2 табл.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Достигаемый технический результат - определение КМПИРИ одним постом радиоконтроля (РКП) и n, равно или более двух, виртуальных постов (ВП) без применения пеленгаторов и радиоприемников с автокорреляторами. В основе способа лежит энергетический принцип, заключающийся в измерении (или вычислении) напряженности поля ИРИ и в нескольких точках пространства с известными координатами их местоположения. При этом напряженность поля ИРИ на РКП измеряют, а в дополнительной точке (точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого и параметры его виртуальной антенны (диаграмма направленности и высота подвеса) задаются. При использовании n ВП они «размещаются» не на одной прямой с РКП и «отстоят» от него по широте и (или) по долготе на несколько угловых минут. Вычисление напряженности на ВП основано на принципе корреляционной зависимости (КЗ) напряженностей полей, создаваемых в заданном диапазоне частот множеством источников радиоизлучения, находящихся, согласно базе данных, в зоне электромагнитной доступности РКП и вычисляемых как для РКП, так и для всех заданных ВП по определенной программе. 1 з.п. ф-лы, 7 ил., 2 табл.

Изобретение относится к авиационной технике и может быть использовано в бортовой пассивной РЛС и автоматической системе управления самолета. Достигаемый технический результат - формирование маршрута носителя пеленгатора, определяющего местоположение излучателя, при котором достигается необходимая точность и носитель в конце маршрута оказывается на заданном расстоянии от излучателя в конечной точке маршрута. Указанный результат достигается за счет того, что в начальной точке маршрута на носителе пеленгатором измеряют пеленг неподвижного излучателя относительно носителя пеленгатора, затем носитель пеленгатора перемещается из начальной точки под углом θопт относительно направления на излучатель, где θопт есть решение выражения T→min, где T - время определения дальности до излучающего объекта, DR - необходимая дисперсия ошибки определения дальности до излучателя, θ - угол между вектором путевой скорости и направлением на излучатель, при этом в процессе движения носителя непрерывно измеряется пеленгатором пеленг излучателя, пройденное носителем расстояние измеряется автономной навигационной системой носителя, кроме этого в момент, когда дисперсия ошибки определения дальности D до излучателя станет равной необходимому значению DR, по совокупности полученных измерений пеленга излучателя и координат носителя определяется дальность до цели и конечная точка маршрута, при этом конечную точку формируемого маршрута носителя пеленгатора определяют из одновременного выполнения двух условий: D≤DR и R≤Rзад, где R - оценка дальности до излучателя относительно носителя, Rзад - заданное расстояние от носителя до излучателя в конечной точке маршрута. 2 ил.

Наверх