Оптическая среда на основе кристалла галогенида рубидия-иттрия rby2cl7, содержащего примесные ионы одновалентного висмута, способная к широкополосной фотолюминесценции в ближнем ик-диапазоне, и способ ее получения



Оптическая среда на основе кристалла галогенида рубидия-иттрия rby2cl7, содержащего примесные ионы одновалентного висмута, способная к широкополосной фотолюминесценции в ближнем ик-диапазоне, и способ ее получения
Оптическая среда на основе кристалла галогенида рубидия-иттрия rby2cl7, содержащего примесные ионы одновалентного висмута, способная к широкополосной фотолюминесценции в ближнем ик-диапазоне, и способ ее получения
Оптическая среда на основе кристалла галогенида рубидия-иттрия rby2cl7, содержащего примесные ионы одновалентного висмута, способная к широкополосной фотолюминесценции в ближнем ик-диапазоне, и способ ее получения

 


Владельцы патента RU 2618276:

Федеральное государственное бюджетное учреждение науки Институт химической физики им. Н.Н. Семенова Российской академии наук (ИХФ РАН) (RU)

Изобретение относится к оптическим средам на основе кристаллических галогенидов, а также к способу их получения и может быть использовано в системах оптической связи. Предложена оптическая среда на основе кристалла галогенида, содержащего ионы низковалентного висмута в качестве единственного оптически активного центра, способная к широкополосной люминесценции в ближнем ИК-диапазоне, представляющая собой кристаллическую фазу хлорида рубидия-иттрия RbY2Cl7, содержащую изоморфную примесь ионов одновалентного висмута Bi+ в количестве от 0.1 до 1 ат. %. Оптическая среда люминесцирует в диапазоне 800-1100 нм при возбуждении излучением с длинами волн в пределах 570-780 нм. Cпособ получения оптической среды включает в себя приготовление шихты путем смешения RbCl, YCl3 и BiCl3 при молярном соотношении, равном 1 : 2 : 0,003-0,03, добавление к шихте металлического висмута при молярном отношении BiMe/BiCl3=1, помещение смеси в кварцевом контейнере в вакууме в вертикальную печь Бриджмена-Стокбаргера, где температура в горячей зоне составляет 620-630°С, в холодной зоне - 480-500°С, и скорость перемещения контейнера из горячей зоны в холодную составляет 0,2-2 мм/ч до образования монокристаллического образца оптической среды. Полученная оптическая среда обладает стабильной люминесценцией в ближнем ИК-диапазоне, что позволяет ее использовать в качестве активной среды для широкополосных усилителей и лазеров. Способ получения кристалла хлорида RbY2Cl7 достаточно прост технологически и позволяет выращивать качественные кристаллы необходимых размеров. 2 н. и 1 з.п. ф-лы, 3 ил., 3 пр.

 

Изобретение относится к оптическим средам на основе кристаллических галогенидов, обладающим способностью к фотолюминесценции в ближнем ИК-диапазоне, а именно, в диапазоне 800-1100 нм при возбуждении излучением с длинами волн в интервале 570-780 нм, а также к способу их получения и может быть использовано для создания активной среды широкополосных твердотельных усилителей и лазеров.

В настоящее время в твердотельных лазерах и оптических усилителях используются, в основном, материалы, содержащие активаторные примеси, представляющие собой ионы переходных и редкоземельных металлов. Эти ионы характеризуются незаполненными d- и f-оболочками соответственно. За счет этого многие из них обладают низколежащими электронно-возбужденными уровнями, расположение которых благоприятствует созданию инверсной населенности, необходимой для осуществления усиления оптического сигнала в лазерах и оптических усилителях. Однако эти активные среды покрывают только небольшую часть всего диапазона видимого и ИК-излучения. Для создания новых лазерных источников, способных к излучению в неосвоенных диапазонах частот необходимо использовать принципиально иные активаторные примеси.

За последние пятнадцать лет появились новые оптические материалы (преимущественно стекла), содержащие низковалентные (валентность ниже +3) соединения висмута в качестве активных центров, обусловливающие наличие в них широкополосной и долгоживущей (сотни микросекунд) фотолюминесценции в ближнем ИК-диапазоне (Hong-Nao Sun, Jiajia Zhou, Jianrong Qiu, Recent advances in bismuth activated photonic materials, Progress in Materials Science, 64 (2014), p. 1-72; RU 2463264, C03C 4/12, C03C 3/12, 20.03.2012; RU 2487840, C03C 3/32, C03C 4/12, 20.07.2013). В отличие от ионов переходных и редкоземельных элементов, обладающих незаполненной d- и f-оболочкой, ион висмута характеризуется открытой р-оболочкой с электронной конфигурацией 6р2. Оптические характеристики подобных активных центров позволяют получить на их основе материалы, которые можно использовать в оптическом приборостроении для изготовления рабочей среды твердотельных лазеров, перестраиваемых в широком диапазоне ближнего ИК-излучения, и широкополосных усилителей, востребованных в целом ряде применений - от телекоммуникации до оборонных задач.

Однако допированные висмутом оптические материалы, в частности стекла различного состава, содержат сразу несколько люминесцирующих центров, которые могут мешать получению оптического усиления в таких материалах за счет потерь на поглощение. Чтобы избежать разнообразия люминесцентных центров в стеклах необходимо уменьшать концентрацию активных центров для предотвращения образования кластеров из висмута. Таким образом, в существующих лазерах и оптических усилителях используются активные среды с очень низкой концентрацией примесных висмутовых центров, поэтому усиление слабого сигнала в таких лазерах и усилителях невелико.

Избежать появления разнообразных люминесцирующих центров в висмутсодержащих оптических материалах можно, если использовать в качестве оптической среды кристаллические материалы. Подбирая кристаллическую матрицу, можно добиться включения в ее состав только одного оптически активного центра за счет изоморфного замещения, если радиусы ионов, способных к взаимному изоморфному замещению не различаются более чем на 15% (правило Гольдшмидта). Следовательно, можно подобрать такие кристаллические фазы, которые будут способны включать в себя в виде изоморфной примеси ионы висмута только определенной валентности.

В патенте CN 1645232, G02F 1/35, G02F 1/39, 27.07.2005 предложен кристаллический оптический материал для перестраиваемого лазера и широкополосного усилителя, содержащий ионы Ва2+, Sr2+, Са2+ или ионы Na+, K+, Cs+, допированный ионами висмута низкой валентности в количестве от 0.001 вес. % до 3 вес. %. Материал люминесцирует в области 1000-1600 нм.

В данном патенте не описаны состав и структура кристалла для заявленного оптического материала, поэтому сложно говорить о недостатках материла.

Сообщается (Jiayu Zheng, Mingying Peng et al., Opt. Express, 2012, Sep; 20(20): 22569-78) о новом типе кристалла Ва2В5O9Сl, допированном висмутом в нулевой валентности (атомом), обладающим способностью к широкополосной фотолюминесценции в ближнем ИК-диапазоне при комнатной температуре. Изучение оптических свойств кристалла позволило обнаружить два типа люминесцирующих центров, возникших при замещении двух различных атомов бария в кристаллической решетке. Оптически активные центры можно получить только в восстановительных условиях.

К недостаткам данного кристаллического материала следует отнести невозможность получения крупных монокристаллических образцов по предложенной авторами методике и наличие двух люминесцирующих центров, один из которых может поглощать люминесценцию другого и вносить оптические потери, препятствуя возможной лазерной генерации.

Наиболее близкими к предлагаемой оптической среде на основе кристалла галогенида и способу ее получения являются оптическая среда, представляющая собой кристаллический галогенид следующей формулы: Bi5(GaCl4)3 или Bi5(AlCl4)3, и способ ее получения (WO 2013143324, С30В 29/12, 03.10.2013 - прототип). Оптическая среда-прототип содержит висмут в виде Bi53+ ионов, являющийся единственным оптически активным центром. Кристаллическая структура обладает способностью к широкополосной люминесценции в диапазоне 1000-3000 нм при возбуждении излучением с длинами волн в пределах 300-1100 нм. Для получения данной кристаллической оптической среды используют известный метод плавления в безводных и анаэробных условиях.

Оптическая среда-прототип благодаря способности к широкополосной люминесценции может применяться в лазерной технике, но данную оптическую среду невозможно получить в виде крупных монокристаллов - ни способом-прототипом, ни методом Бриджмена-Стокбаргера, последним из-за трудности достижения равновесного состояния в расплаве и сложности кристаллической структуры галогенида-прототипа.

Задачей предлагаемого изобретения является создание эффективной оптической среды, обладающей стабильной люминесценцией в ближнем ИК-диапазоне, а именно в диапазоне 800-1100 нм, при возбуждении излучением с длинами волн в интервале 570-780 нм, что позволит ее использовать в качестве активной среды для широкополосных усилителей и лазеров.

Задачей изобретения является также разработка относительно дешевого способа получения заявляемой оптической среды, который позволит выращивать качественные кристаллы необходимых размеров.

Решение поставленной задачи достигается предлагаемой оптической средой на основе кристалла галогенида, содержащего ионы низковалентного висмута в качестве единственного оптически активного центра, способной к широкополосной люминесценции в ближнем ИК-диапазоне, которая представляет собой кристаллическую фазу хлорида рубидия-иттрия RbY2Cl7, содержащую изоморфную примесь одновалентных ионов висмута Bi+ в количестве от 0,1 до 1 ат. %, и люминесцирует в диапазоне 800-1100 нм при возбуждении излучением с длинами волн в пределах 570-780 нм.

Решение поставленной задачи достигается также предлагаемым способом получения заявляемой оптической среды, включающим приготовление шихты путем смешения RbCl, YCl3 и BiCl3 при молярном соотношении RbCl:YCl3:BiCl3, равном 1:2:0.003-0.03, добавление к шихте металлического висмута, помещение смеси в кварцевом контейнере в вакууме в вертикальную печь Бриджмена-Стокбаргера, где температура в горячей зоне составляет 620-630°С, в холодной зоне - 480-500°С и скорость перемещения контейнера из горячей зоны в холодную составляет 0,2-2 мм в час, до образования монокристаллического образца оптической среды.

Металлический висмут можно добавлять к шихте при молярном отношении BiMe/BiCl3=1.

При создании заявляемой оптической среды были проведены вычислительные исследования, которые показали, что значение ионного радиуса монокатиона Bi+ позволяет ему изоморфно замещать катионы тяжелых щелочных металлов: K+, Rb+, Cs+ (Romanov A.N., Grigoriev F.V., Sulimov V.B. Comput. Theor. Chem., 2013, V. 1017, p. 159), следовательно, в качестве матрицы для введения изоморфной примеси одновалентного висмута как единственного оптически активного центра могут быть использованы кристаллы, имеющие в своем составе ионы K+, Rb+, Cs+. Экспериментальные исследования различных кристаллических галогенидов позволили выбрать в качестве кристаллической матрицы для предлагаемой оптической среды галогенид RbY2Cl7 как один из легко доступных и отличающийся рядом качеств, полезных с точки зрения дизайна оптической среды лазера на его основе. Это кристалл ромбической сингонии, легко поддающийся обработке. Он обладает широким окном прозрачности, простирающимся от видимой до дальней ИК-области спектра. Невысокая энергия фононов в этом кристалле исключает безызлучательную релаксацию возбужденных состояний активного центра. Наличие в кристалле RbY2Cl7 ионов Rb+, имеющих кристаллический ионный радиус иона ~ 1,860 (для координационного числа 12), близкий к соответствующему кристаллическому ионному радиусу монокатиона Bi+ ~ 1,903 обеспечивает изоморфное замещение Rb+ ионами висмута Bi+ в образующейся кристаллической решетке заявляемой оптической среды. Количество ионов висмута в кристалле регулируется соотношением реагентов при его получении.

Для выращивания крупных монокристаллов галогенида RbY2Cl7 с изоморфной примесью одновалентных ионов висмута использовался модифицированный вертикальный метод направленной кристаллизации Бриджмена-Стокбаргера (Donald С. Stockbarger. Rev. Sci. Instrum., 1936, V. 7, p. 133). Размер выращенного монокристалла зависит от размера контейнера и количества шихты.

Фаза RbY2Cl7 может кристаллизоваться из стехиометрического расплава, содержащего сравнительно большое количество кислотного по Льюису компонента YCl3 (RbCl/YCl3=1/2). Это способствует образованию в расплаве значительных концентраций одновалентного иона висмута по реакции синпропорционирования:

,

поскольку Льюисова кислота реагирует с образующимся параллельно хлорид-ионом:

,

сдвигая равновесие в обратимой реакции (1) в сторону образования Bi+.

Таким образом, для получения материала, содержащего одновалентные ионы висмута, необходимо наличие галогенидов обоих металлов (рубидия и иттрия) в составе используемой шихты. При этом хлорид иттрия выступает в роли Льюисовой кислоты, способствуя образованию ионов одновалентного висмута по реакции синпропорционирования, а рубидий, входящий в состав образующегося кристалла, может изоморфно замещаться на ион одновалентного висмута, способствуя вхождению последнего в состав кристалла в значительной концентрации, и выращиванию оптически совершенных кристаллов.

Количество трихлорида висмута BiCl3, используемое для приготовления расплава, должно быть существенно меньше количеств RbCl и YCl3, чтобы не затруднять кристаллизацию фазы RbY2Cl7, и в то же время оно должно обеспечивать достаточную интенсивность люминесценции получаемой оптической среды.

Для получения кристаллов RbY2Cl7 наилучшего качества количество компонентов RbCl и YCl3 (в молярных долях), используемое для приготовления шихты, должно соответствовать стехиометрическому соотношению относительно образования RbY2Cl7, и равняется 1 и 2 моль, соответственно. При этом количество BiCl3 может составлять 0.003-0.03 моль. За пределами указанных оптимальных значений не достигается кристаллизация образцов хорошего оптического качества. Количество металлического висмута (в молярных долях), добавляемого к шихте, приблизительно равно количеству молей BiCl3, при этом не весь металлический висмут потребляется в реакции синпропорционирования (1), и его избыток образует отдельную фазу расплавленного металла, которая не мешает процессу кристаллизации хлорида RbY2Cl7.

Компоненты шихты взвешивали и смешивали в условиях бокса с контролируемой атмосферой, что исключало частичный гидролиз чувствительных к влаге компонентов YCl3 и BiCl3. После помещения шихты внутрь кварцевой ампулы производилось ее вакуумирование и запаивание в условиях динамического вакуума. Это обстоятельство важно, поскольку подобная техника эксперимента позволяет избежать улетучивания легко испаряющихся компонентов расплава (BiCl3), а также окисления низковалентных соединений висмута кислородом окружающей атмосферы. Кроме того, работа в запаянных кварцевых ампулах помогает предотвратить гидролиз хлоридов, чувствительных к влаге (YCl3, BiCl3).

Приводим примеры получения предлагаемой оптической среды.

Пример 1.

Монокристаллический образец RbY2Cl3, легированный Bi+, был приготовлен по методу Бриджмана-Стокбаргера из исходной шихты, состоящей из YCl3 (99.9%-ной чистоты), RbCl (99.9%-ной чистоты) и BiCl3 (99.998%-ной чистоты). Молярное соотношение YCl3:RbCl:BiCl3 в шихте составляло 2:1:0.003, при этом общий вес шихты составлял 40 грамм. К шихте также добавлялся металлический висмут в молярной пропорции BiMe/BiCl3=1. Все операции по взвешиванию, измельчению, смешиванию реагентов и помещению их в контейнер (ампулу) из кварцевого стекла (внутренний диаметр 22 мм) производились в сухом (<2 ppm Н2О, <10 ppm O2) перчаточном боксе, наполненном аргоном. Наполненный контейнер извлекался из бокса, откачивался до форвакуума (10-2 Торр), промывался гелием, снова откачивался и затем запаивался по месту предварительно сформированной перетяжки. Запаянный контейнер помещался в печь для выращивания монокристалла по методу Бриджмена-Стокбаргера. Выращивание монокристалла производили путем перемещения ампулы со скоростью 2 мм/час сверху вниз в градиентном температурном поле. Температура верхней (горячей) и нижней (холодной) зоны в вертикальной печи составляла 630 и 500°С, соответственно. Длина монокристаллической були составила 60 мм. Кристалл RbY2Cl7 содержал изоморфную примесь ионов одновалентного висмута Bi+ в количестве 0,1 ат. %.

Пример 2.

Монокристаллический образец RbY2Cl7, легированный Bi+, был приготовлен по методу Бриджмана-Стокбаргера из исходной шихты, состоящей из YCl3 (99.9%-ной чистоты), RbCl (99.9%-ной чистоты) и BiCl3 (99.998%-ной чистоты). Компоненты присутствовали в шихте в молярном соотношении YCl3:RbCl:BiCl3=2:1:0.012, при этом общий вес шихты составлял 40 грамм. К шихте также добавлялся металлический висмут в молярной пропорции BiMe/BiCl3=1. Все операции по взвешиванию, измельчению, смешиванию реагентов и помещению их в контейнер (ампулу) из кварцевого стекла (внутренний диаметр 22 мм) производились в сухом (<2 ppm Н2О, <10 ppm О2) перчаточном боксе, наполненном аргоном. Наполненный контейнер извлекался из бокса, откачивался до форвакуума (10-2 Торр), промывался гелием, снова откачивался и затем запаивался по месту предварительно сформированной перетяжки. Запаянный контейнер помещался в печь для выращивания монокристалла по методу Бриджмена-Стокбаргера. Выращивание монокристалла производили путем перемещения ампулы со скоростью 0,2 мм/час сверху вниз в градиентном температурном поле. Температура верхней (горячей) и нижней (холодной) зоны в вертикальной печи составляла 630 и 500°С, соответственно. Длина монокристаллической були составила 60 мм. Кристалл RbY2Cl7 содержал изоморфную примесь ионов одновалентного висмута Bi+ в количестве 0,4 ат. %.

Пример 3.

Выращивание монокристаллического образца RbY2Cl7, легированного Bi+, производилось по методике, аналогичной описанной в примере 2 за исключением того, что соотношение компонентов в исходной шихте составляло YCl3:RbCl:BiCl3=2:1:0.03. Общий вес шихты также составлял 40 грамм. В результате получен монокристалл RbY2Cl7, который содержал изоморфную примесь ионов одновалентного висмута Bi+ в количестве 1 ат. %.

При кристаллизации хлорида RbY2Cl7 благодаря близости ионных радиусов Rb+ и Bi+ происходит захват ионов Bi+ в кристаллическую решетку RbY2Cl7 в виде изоморфной примеси. В результате формируется оптическая среда, содержащая оптически активные примесные ионы одновалентного висмута, обладающие способностью к фотолюминесценции в ближнем ИК-диапазоне. Спектр оптического поглощения материала, полученного по примеру 2, представлен на рис. 1. Сравнение интенсивности сигнала фотолюминесценции образцов предлагаемой оптической среды, полученных по примерам 1, 2 и 3, представлены на рис. 2. Кинетика затухания фотолюминесценции монокатиона Bi+ в монокристалле RbY2Cl7, приготовленного по примеру 2, представлена на рис. 3. Характерное время затухания фотолюминесценции составляет 455 микросекунд. Одноэкспоненциальный характер затухания фотолюминесценции свидетельствует о наличии единственного типа фотолюминесцентного центра Bi+, что соответствует ранее выдвинутому предположению о замещении ионом Bi+ катиона Rb+ в единственном кристаллографическом положении Rb+ с симметрией Cs.

Обнаруженная экспериментально широкая полоса интенсивной фотолюминесценции свидетельствует о том, что заявляемый материал может быть использован в качестве рабочей среды твердотельных лазеров, перестраиваемых в широком диапазоне ближнего ИК-излучения, а также широкополосных оптических усилителей ближнего ИК-диапазона. Предлагаемый способ получения хлорида RbY2Cl7 достаточно прост технологически и позволяет выращивать качественные кристаллы необходимых размеров.

1. Оптическая среда на основе кристалла галогенида, содержащего ионы низковалентного висмута в качестве единственного оптически активного центра, способная к широкополосной люминесценции в ближнем ИК-диапазоне, отличающаяся тем, что она представляет собой кристаллическую фазу хлорида рубидия-итрия RbY2Cl7, содержащую изоморфную примесь одновалентных ионов висмута Bi+ в количестве от 0,1 до 1 ат. %, и люминесцирует в диапазоне 800-1100 нм при возбуждении излучением с длинами волн в пределах 570-780 нм.

2. Способ получения оптической среды по п. 1, включающий приготовление шихты путем смешения RbCl, YCl3 и BiCl3 при молярном соотношении RbCl:YCl3:iBiCl3, равном 1:2:0,003-0,03, добавление к шихте металлического висмута, помещение смеси в кварцевом контейнере в вакууме в вертикальную печь Бриджмена-Стокбаргера, где температура в горячей зоне составляет 620-630°С, в холодной зоне - 480-500°С и скорость перемещения контейнера из горячей зоны в холодную составляет 0,2-2 мм в час, до образования монокристаллического образца оптической среды.

3. Способ по п. 2, отличающийся тем, что металлический висмут добавляют к шихте при молярном отношении BiMe/BiCl3=1.



 

Похожие патенты:

Заявляемое устройство предназначено для генерации когерентного и некогерентного электромагнитного излучения. Твердотельный источник электромагнитного излучения содержит рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала.
Изобретение относится к области создания материалов для пассивных и активных элементов устройств фотоники, квантовой электроники и оптики. Способ образования центров окраски в алмазе включает облучение алмаза с однородным распределением по объему А-агрегатов и с их концентрацией не менее 1018 см-3 ионизирующим излучением с энергией не менее 1 МэВ дозой 100-120 част./см2 на каждый А-агрегат.

Многопроходный лазерный усилитель на дисковом активном элементе содержит активный элемент и две оптические системы для переноса изображения с лазерного активного элемента обратно на лазерный активный элемент.

Изобретение относится к новым соединениям класса сенсибилизированных люминофоров на основе неорганических кристаллических соединений, а именно к сложному гафнату лития-лантана состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6.

Изобретение относится к оптическим средам на основе кристаллических галогенидов и может быть использовано в системах оптической связи в качестве широкополосных усилителей и лазеров.

Устройство для частотного преобразования лазерного излучения на основе вынужденного комбинационного рассеяния включает в себя оптически связанные и размещенные на одной оптической оси источник накачки с активным элементом.

Изобретение относится к области лазерной техники и касается монокристаллического материала для дисковых лазеров. Монокристаллический материал выполнен на основе алюмоиттриевого граната, активированного ионами иттербия.

Изобретение относится к области лазерной техники и касается монокристаллического материала с неоднородным распределением оптических примесей по заданному закону вдоль активного лазерного элемента со следующей структурной формулой: где где z - пространственная координата, направленная вдоль длины кристалла и определяющая изменение концентрационного профиля ионов эрбия и иттербия, в системе отсчета, берущей начало на входной грани активного элемента, и имеющая значения от 0 до 1 см.

Лазер // 2587499
Изобретение относится к лазерной технике. Лазер для испускания излучения в видимом диапазоне содержит помещенный в резонатор анизотропный кристалл, легированный редкоземельными элементами, содержащий 5d-4f переход.

Изобретение относится к лазерной технике. Способ генерации лазерных импульсов высокой мощности в диапазоне длин волн 3-5 мкм осуществляется с использованием ZnSe-лазера, включающего резонатор с глухим и полупрозрачным зеркалами, и лазера YAG:Еr3+ с длиной волны излучения 2,94 мкм для его накачки.

Изобретение относится к получению светопоглощающих покрытий и может быть использовано при лазерной обработке металлических поверхностей. Поглощающее лазерное излучение покрытие, используемое при обработке металлической поверхности CO2-лазером, состоит из двух слоев, причем первый слой содержит смесь органического связующего Лак АС-82 с сажей в объемном соотношении 3:1 соответственно, и имеет толщину 30…40 мкм, а второй слой содержит смесь органического связующего Лак АС-82 с растворителем Р-647 в объемном соотношении 1:3…4 соответственно, и имеет толщину слоя 3…5 мкм.

Изобретение относится к линзам, заполненным жидкостью, и может применяться в офтальмологии, фотонике, цифровых телефонах, камерах, микроэлектронике. Заявленный исполнительный элемент герметической линзы, заполненной жидкостью, содержит: корпус; резервуар, расположенный внутри корпуса; сжимающий рычаг, имеющий первый конец, который закреплен, и второй конец, который не закреплен.

Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, изготовления неохлаждаемых детекторов χ- и γ-излучений для ядерно-физических методов диагностики и контроля, а также изготовления волоконных световодов ИК-диапазона.

Изобретение относится к силиконовым полимерам и гидрогелям из них. Предложен силиконовый полимер, имеющий общий коэффициент пропускания по меньшей мере 90%, полученный из реакционноспособных компонентов, содержащих (i) по меньшей мере один силиконовый компонент, представляющий собой сложный эфир (мет)крилата, и (ii) 2-гидроксиэтил акриламид.

Настоящее изобретение относится к устройству для обработки оптических волокон. Заявленное устройство для обработки оптических волокон содержит пару роликов, предназначенных для расположения в образованном между ними зазоре первого элемента с оптическими волокнами, содержащего один или несколько оптических волокон, заключенных в оболочку, и механизм привода во вращение роликов, предназначенный для протяжки первого элемента с оптическими волокнами путем осуществления контакта между внешней поверхностью первого элемента с оптическими волокнами и роликами, при этом первый ролик из указанной пары роликов содержит на периферийной контактной поверхности первую канавку, предназначенную для расположения первого элемента с оптическими волокнами, и имеющую форму, обеспечивающую размещение в ней первого элемента с оптическими волокнами так, что менее половины площади поперечного сечения первого элемента с оптическими волокнами выступает из первой канавки, и второй ролик из указанной пары роликов содержит периферийную контактную поверхность, контактирующую с поверхностью первого элемента с оптическими волокнами.

Изобретение относится к смачивающим агентам для контактных линз. Предложен смачивающий агент для контактных линз, содержащий блок-сополимер определенной структуры, состоящий из гидрофильных и гидрофобных сегментов, причем молекулярная масса гидрофобного сегмента составляет 300-1800.

Изобретение относится к блокирующим УФ-излучение силикон-гидрогелевым композициям и контактным линзам на их основе. Предложена блокирующая УФ-излучение силикон-гидрогелевую композиция, содержащая, мас.

Изобретение относится к ионным силикон-гидрогелевым и офтальмологическим изделиям, изготовленным из них и имеющим желаемый профиль поглощения слезного и поликатионного компонента офтальмологического раствора.

Изобретение относится к технологии получения оптических изделий из германия путем выращивания монокристаллов германия из расплава в форме профильных изделий в виде выпукло-вогнутых заготовок, которые после обработки могут быть использованы для изготовления линз инфракрасного диапазона.

Изобретение относится к просветляющим покрытиям на оптическое стекло. Технический результат изобретения - снижение коэффициента отражения от поверхности стекла и повышение механической прочности просветляющего покрытия.

Изобретение относится к технологии получения нитевидных монокристаллов сульфобромидов трехвалентных металлов SbSBr, BiSBr, CrSBr, которые могут быть использованы в качестве легирующих добавок при получении композитных пьезоэлектрических материалов с заданными свойствами в гидроакустических преобразователях и преобразователях электромагнитной энергии в механическую.
Наверх