Способ повышения ресурса газотурбинного двигателя по числу запусков



Способ повышения ресурса газотурбинного двигателя по числу запусков
Способ повышения ресурса газотурбинного двигателя по числу запусков
Способ повышения ресурса газотурбинного двигателя по числу запусков

 


Владельцы патента RU 2627490:

Бадамшин Ильдар Хайдарович (RU)

Изобретение относится к авиадвигателестроению, к способам повышения ресурса и основных параметров за счет введения в конструкцию двигателя систем охлаждения турбин. Техническим результатом является повышение ресурса работы двигателя по числу запусков, соответственно малоцикловой усталости, путем снижения перепада температур в лопатках и дисках турбины за счет их предварительного подогрева горячим воздухом. Перед холодной прокруткой и запуском двигателя в систему охлаждения турбины подают горячий воздух от внешнего вспомогательного газотурбинного двигателя или от наземной установки и прогревают его в течение 3…6 минут, после чего запускают двигатель. Параметры подаваемого горячего воздуха соответствуют параметрам воздуха, подаваемого на охлаждение турбины данного двигателя. Подачу горячего воздуха отключают после выхода двигателя на режим «малый газ». 3 ил.

 

Изобретение относится к авиадвигателестроению, к способам повышения ресурса и основных параметров за счет введения в конструкцию двигателя систем охлаждения турбин.

Известен способ подачи охладителя в лопаточный аппарат газотурбинной установки путем регулирования его расхода при изменении режима работы установки. В момент включения камеры сгорания и в период последующего заброса температуры газа относительный расход охладителя увеличивают до величины, превышающей в 1,5-2 раза его номинальное значение, после заброса расход уменьшают до величины, составляющей 0,25-0,3, и поддерживают неизменным до режима предельной по условиям прочности лопаток температуры, после чего расход увеличивают до номинального значения пропорционально росту мощности установки. А также в период заброса температуры газа охладитель подают от внешнего источника, а после заброса - от компрессора установки (АС SU №585303, F02C 7/12; F01D 25/12, 23.12.1977 г; бюллетень №47).

Недостатком способа является отсутствие учета количественного влияния температурного градиента в лопатке на малоцикловую усталость.

Известен способ охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя, включающий подачу охлаждающего воздуха в систему охлаждения рабочего колеса и изменение его расхода по режимам работы двигателя, по которому на крейсерских режимах работы двигателя наряду с уменьшением расхода охлаждающего воздуха подводят газ из проточной части турбины на вход системы охлаждения рабочего колеса турбины, при этом соотношение массовых расходов газа и охлаждающего воздуха выбирают в пределах 0,8-1,6 (RU 2159335 C1, F01D 25/12, F02C 7/12, 28.04.1999).

Недостатком способа является отсутствие учета влияния фактора прогрева рабочего колеса на малоцикловую усталость.

Известен способ термоусталостных испытаний конвективно-охлаждаемых лопаток, включающий подачу охлаждающей среды внутрь перфорированного дефлектора испытываемой лопатки и нагрев ее внешней поверхности и выпуск среды через щель в выходной кромке лопатки, предварительно разделяют внутреннее пространство дефлектора на переднюю и заднюю полости, нагрев внешней поверхности лопатки осуществляют постоянно, а подачу охлаждающей среды производят поочередно в переднюю и заднюю полости соответственно с температурами ниже и выше температуры поверхности лопатки до момента установления стационарного температурного состояния, причем при подаче среды в заднюю полость в передней создают пониженное давление (AC SU 1118774 A, F01D 5/18, 15.10.1984 г.; бюллетень №38).

Этот способ характеризуется экспериментальной оценкой малоцикловой (термической) усталости.

Недостатками способа являются большие трудоемкость и стоимость.

Известен способ контроля охлаждаемых лопаток турбины путем продувки каналов контролируемой лопатки рабочей средой, измерение параметра, характеризующего состояние системы ее охлаждения, и сравнение его с одноименным параметром эталонной лопатки, лопатку предварительно помещают в герметичную емкость с внутренней поверхностью, эквидистантной наружной поверхности лопатки, и осуществляют нагрев емкости, а в качестве характерного параметра используют распределение температурных напоров между внутренней поверхностью емкости и лопаткой для сходственных точек эталонной и контролируемой лопаток (AC SU №1138524 A, F01D 5/18, 7.02.1985 г.; бюллетень №5).

Недостатками способа являются большие трудоемкость и стоимость.

Наиболее близким к предлагаемому способу является способ снижения температурных перепадов в дисках газовой турбины на переходных и стационарных режимах путем подогрева диска рабочим газом из проточной части, подаваемым в полость, заключенную между диском и полостью, газ отводят из полости в атмосферу через отверстие в корпусе с отбором газа по оси вращения диска (АС SU №213466, F01С, 12.03.1968 г.; бюллетень №10).

Недостатком способа является использование отработанных газов, содержащих частицы нагара, которые в процессе эксплуатации приводят к уменьшению проходных сечений системы охлаждения.

Задача изобретения - расширение функциональных возможностей газотурбинного двигателя на пусковых режимах за счет снижения перепада температур между газовым потоком, обтекающим лопатки турбины, и внутренними полостями охлаждаемых лопаток, а также за счет снижения перепада температур между ободом диска и ступицей.

Технический результат изобретения - повышение ресурса работы двигателя по числу запусков путем снижения перепада температур в лопатках и дисках турбины за счет их предварительного подогрева горячим воздухом.

Поставленная задача достигается тем, что в способе повышения ресурса авиационного газотурбинного двигателя по числу запусков, соответственно по малоцикловой усталости, в котором снижают температурные перепады в газовой турбине, в отличие от прототипа перед холодной прокруткой и запуском двигателя в полости охлаждаемых сопловых и рабочих лопаток, а также на диски турбины двигателя подают горячий воздух с параметрами охлаждающего воздуха данного двигателя от внешнего вспомогательного газотурбинного двигателя и прогревают в течение 3…6 минут, после чего запускают двигатель, подачу горячего воздуха в систему охлаждения отключают после выхода двигателя на режим «малый газ».

Сущность изобретения поясняется чертежами. На фиг. 1 изображена схема подачи горячего воздуха в систему охлаждения турбины, в которую перед холодной прокруткой и запуском двигателя подают горячий воздух (поз. 1) от внешнего вспомогательного газотурбинного двигателя или от наземной установки и прогревают лопатки и диски турбины. Параметры подаваемого горячего воздуха соответствуют температуре и расходу воздуха на охлаждение турбины данного двигателя. На фиг. 2 приведена типовая диаграмма термической усталости. На фиг. 3 приведена схема установки распределительного крана (клапана) подачи горячего воздуха от внешнего источника в систему охлаждения турбины: 1 - отбор воздуха от компрессора на охлаждение турбины; 2 - подвод воздуха на охлаждение турбины двигателя; 3 - распределительный кран подвода воздуха на охлаждение от внешнего источника.

Пример конкретной реализации способа

Перед запуском газотурбинного двигателя температура лопаток и дисков турбины имеет температуру окружающего воздуха: зимой до -30°С и ниже, летом до +30°С и выше.

Рассмотрим запуск двигателя с выходом на режим «малый газ» без предварительного подогрева лопаток и дисков.

Допустим, что на режиме «малый газ» температура газов перед турбиной составляет tг*=600°С. Температура окружающего воздуха 20°С. Температура холодного двигателя и, соответственно, температура лопатки принимается равной температуре окружающего воздуха. В этом случае во время запуска в момент розжига камеры сгорания температура охлаждающего воздуха tохл* принимается равной температуре окружающего воздуха 20°С. Тогда температура лопатки tл определяется по известной формуле

где Θ=0,5 - коэффициент интенсивности конвективно-пленочного охлаждения лопатки.

Перепад температур между наружной и внутренней стенками лопатки составит

Δt=tл-tохл*=290°.

А величина термической деформации εt составит

εt=α⋅Δt=3,828⋅10-3,

где α=13,2⋅10-6 К-1 - коэффициент теплового расширения жаропрочного сплава.

Рассмотрим запуск двигателя с выходом на режим «малый газ» с предварительным подогревом лопаток и дисков.

Допустим, что в систему охлаждения турбины подается воздух от внешнего вспомогательного газотурбинного двигателя с температурой 250°С, т.е. tохл*=250°С. Повторив расчет термической деформации для этого случая, получим

εt=α⋅Δt=2,31⋅10-3.

Таким образом, в данном случае величина термической деформации уменьшилась примерно на 66%.

Используя диаграмму термической усталости (фиг. 2), получим увеличение числа циклов до разрушения с N1 до N2. При одинаковом запасе по числу циклов нагружения можно соответственно повысить ресурс двигателя по числу запусков, то есть по малоцикловой усталости.

Для реализации способа необходимо в коммуникацию (обвязку) двигателя ввести следующие конструктивные доработки.

В трубопровод, подающий воздух от компрессора на охлаждение турбины 2 (фиг. 3), устанавливается распределительный кран (клапан) подачи горячего воздуха от внешнего источника в систему охлаждения турбины. Распределительный кран открывает подачу горячего воздуха от внешнего источника перед холодной прокруткой и запуском двигателя и закрывает ее после выхода двигателя на режим «малый газ».

Итак, заявляемое изобретение позволяет расширить функциональные возможности за счет подогрева лопаток и дисков турбины через систему ее охлаждения.

Способ повышения ресурса авиационного газотурбинного двигателя по числу запусков, соответственно по малоцикловой усталости, в котором снижают температурные перепады в газовой турбине, отличающийся тем, что перед холодной прокруткой и запуском двигателя в полости охлаждаемых сопловых и рабочих лопаток, а также на диски турбины двигателя подают горячий воздух с параметрами охлаждающего воздуха данного двигателя от внешнего вспомогательного газотурбинного двигателя и прогревают в течение 3…6 минут, после чего запускают двигатель, подачу горячего воздуха в систему охлаждения отключают после выхода двигателя на режим «малый газ».



 

Похожие патенты:

Изобретение относится к воздушному блокировочному кольцу в сборе и, в частности, к воздушному блокировочному кольцу в сборе, имеющему радиальное крепление. Воздушное блокировочное кольцо (40) в сборе содержит ближний конец и дальний конец, блокировочное кольцо, имеющее выступ, и опору блокировочного кольца, имеющую участок стенки.

Изобретение относится к энергетике. Система содержит смесительный узел, выполненный с возможностью смешивания жидкого топлива и воды с созданием топливной смеси.

Система продувки топлива, предназначенная для турбинного узла, содержит систему подачи топлива. Система подачи топлива содержит источник топлива, предназначенный для подачи топлива к турбинному узлу, управляющий клапан, предназначенный для регулирования потока топлива, делитель потока, предназначенный для селективного распределения топлива к по меньшей мере одной камере сгорания, и клапан камеры сгорания, расположенный выше по потоку от указанной по меньшей мере одной камеры сгорания.

Изобретение относится к цилиндрическому кожуху, который используется в качестве кожуха вентилятора для закрытия лопастей вентилятора реактивного двигателя воздушного судна, и к способу изготовления цилиндрического кожуха.

Изобретение относится к роторам турбомашин, используемых в авиации. Барабан ротора турбомашины, содержащий корпус в форме полого цилиндрического тела вращения вокруг продольной оси и выполненный в нем один и более венец со средствами для крепления хвостовиков лопаток, расположенных по наружной поверхности через равные промежутки в поперечном направлении, при этом корпус содержит металломатричный композит с перекрестной укладкой армирующих волокон, средства для крепления хвостовиков лопатки выполнены в виде корневого элемента под сварку по форме профиля лопатки, а металломатричный композит сформирован по всей наружной поверхности тела вращения слоем толщиной, не превышающей высоту корневого элемента.

Изобретение относится к роторам турбомашин, используемых в авиации. Барабан ротора турбомашины выполнен в форме полого цилиндрического тела вращения вокруг продольной оси с одним и более венцами, со средствами для крепления хвостовиков лопаток, расположенных через равные промежутки по наружной поверхности, при этом барабан выполнен из металломатричного композита с перекрестной укладкой армирующих волокон, а средства для крепления хвостовиков лопаток выполнены в виде корневых элементов под сварку по форме профиля лопатки, при этом на внутренней поверхности барабана из композита выполнены наплывы, фланцы или цапфы с закладными элементами под сварку, причем наплывы расположены под корневыми элементами.

Изобретение относится к области метеорологии и может быть использовано для прогнозирования погоды. Сущность: выбирают из множества элементов информации о погоде, которые относятся к областям и моментам времени и которые включают в себя, по меньшей мере, температурные данные, множество наборов информации о погоде, относящихся к множеству моментов времени в течение фиксированного периода, касающихся первой области, содержащей местоположение, в котором размещается устройство использования воздуха.

Изобретение относится к элементам систем газотурбинных двигателей (ГТД) и может быть использовано в маслосистемах теплонапряженных авиационных ГТД для регулирования давления сжатого воздуха и горячих газов в системе суфлирования.

Изобретение относится к области машиностроения. Система нагрева топливного газа с когенерационной установкой, в которой когенерационная установка подключена к блоку управления, соединена трубопроводами подвода и отвода топливного газа с агрегатным блоком подготовки топливного газа (АБПТГ) и двигателем газоперекачивающего агрегата (ГПА) и содержит в своей конструкции два последовательно подключенных теплообменника: газомасляный теплообменник (ГМТ) и теплообменник-утилизатор тепла выхлопных газов (ТУВГ), в которых греющими теплоносителями выступают соответственно горячее масло и выхлопные газы газотурбинного двигателя когенерационной установки.

Изобретение относится к области машиностроения, касается устройства элементов систем газотурбинных двигателей (ГТД) и может быть использовано в маслосистемах авиационных ГТД для поддержания заданного давления воздушно-газовой смеси в системе суфлирования масляных полостей.
Наверх