Способ испытаний погружных центробежных насосов

Изобретение относится к нефтяной промышленности и может быть использовано при стендовых испытаниях погружных центробежных насосов для добычи нефти. Способ испытаний насосов включает осуществление цикла циркуляции модельной вязкой жидкости через исследуемый насос и регулирование режимов работы насоса с одновременным контролем параметров насоса. При этом предварительно измеряют плотность и вязкость модельной жидкости при различной температуре и строят зависимости последних от температуры. Производят регулирование режимов работы путем изменения частоты вращения вала. При этом одновременно непрерывно производят замеры параметров работы насоса на неустановившихся режимах при изменяющейся во времени температуре. По результатам замеров строят зависимости подачи, напора, потребляемой мощности и КПД насоса от температуры на приеме, а затем перестраивают их в зависимости подачи, напора, потребляемой мощности и КПД насоса от вязкости на различных режимах. По этим зависимостям строят напорно-расходные и энергетические характеристики насоса при различных значениях вязкости. Изобретение позволяет упростить процесс исследования, сократить время и трудоемкость испытаний, обеспечить проведение исследований при переменной температуре на входе в насос, расширить спектр исследуемых характеристик насоса. 4 ил.

 

Изобретение относится к области нефтяной промышленности и может быть использовано при стендовых испытаниях погружных центробежных насосов для добычи нефти.

Известен способ исследований характеристик погружных центробежных насосов на вязких жидкостях, включающий откачку рабочей жидкости из бака, нагнетание ее насосом, поступление жидкости обратно в бак, измерение подач, давлений, мощностей, КПД, изменение вязкости жидкости и плавное регулирование режимов работы с достижением заданного температурного режима при компенсации нагрева жидкости от перекачки через насос охлаждением в теплообменнике (RU 2075654, 1995).

При практической реализации данного способа для снятия характеристики насоса необходимо поддерживать заданные значения температуры и вязкости на входе в насос, что повышает трудоемкость процесса, затраты времени и позволяет получать ограниченное количество характеристик при различных значениях вязкости.

Наиболее близким техническим решением к заявляемому изобретению является способ испытаний погружных центробежных насосов, включающий откачку жидкости из бака, нагнетание ее насосом, поступление жидкости обратно в бак, изменение вязкости жидкости, регулирование режимов работы и измерение параметров насоса, причем нагрев потока осуществляют исследуемым насосом, а для регулирования температуры жидкости в баке применяют теплообменник, куда подают холодную воду из водопровода с различными значениями расхода, при этом добиваются установления стационарных режимов работы с постоянными значениями температуры на входе в насос, и замеры параметров насоса проводят на стационарных режимах (Дроздов А.Н. Технология и техника добычи нефти погружными насосами в осложненных условиях. М.: МАКС пресс, 2008, с. 53-67).

Недостатком известного способа является то, что в процессе испытаний требуется значительное время на достижение установившегося значения температуры на входе в насос, соответствующего требуемому в эксперименте значению вязкости жидкости. В результате увеличиваются и затраты, и время на проведение испытаний.

Технической проблемой, на решение которой направлено настоящее решение, является упрощение процесса исследования и, соответственно, сокращение времени и трудоемкости испытаний.

Указанная проблема решается тем, что в способе испытаний погружных центробежных насосов, включающем осуществление замкнутого цикла циркуляции модельной вязкой жидкости через исследуемый насос и регулирование режимов работы насоса с одновременным контролем параметров насоса, согласно изобретению предварительно измеряют плотность и вязкость модельной жидкости при различных значениях температуры и строят зависимости изменения вязкости и плотности модельной рабочей жидкости от температуры, затем в процессе замкнутого цикла циркуляции модельной вязкой жидкости через исследуемый насос производят регулирование режимов работы насоса путем изменения давления на выходе насоса и изменения частоты вращения вала, при этом одновременно в непрерывном режиме производят замеры параметров работы насоса на неустановившихся режимах при изменяющейся во времени температуре, по результатам замеров строят зависимости подачи, напора, потребляемой мощности и КПД насоса от температуры на приеме, по зафиксированным значениям температуры модельной жидкости, используя предварительно полученные зависимости вязкости и плотности модельной рабочей жидкости от температуры, определяют ее плотность и вязкость, после чего по полученным зависимостям подачи, напора, потребляемой мощности и КПД насоса от вязкости на различных режимах строят напорно-расходные и энергетические характеристики насоса при различных значениях вязкости.

Достигаемый технический результат заключается в обеспечении проведения исследований при переменной температуре на входе в насос и в увеличении объема информативности, а именно расширении спектра исследуемых характеристик насоса.

Сущность способа поясняется чертежами, где на фиг. 1 представлены зависимости плотности и вязкости рабочей жидкости от температуры, на фиг. 2 показана схема стенда для исследования характеристик насосов, на фиг. 3 - зависимость подачи насоса от температуры жидкости на входе в насос, на фиг. 4 - напорные характеристики погружного центробежного насоса при разных значениях вязкости жидкости.

Стенд содержит информационно-измерительную систему 1 (в ее состав входят различные контрольно-измерительные приборы - датчики давления, температуры и расхода, частотный преобразователь, программируемый логический контроллер и компьютер), электродвигатель 2, бак 3, насос 4 с всасывающей линией 5 и выкидной линией 6, а также задвижки 7 и 8.

Способ исследования характеристик погружных центробежных насосов на вязких жидкостях согласно настоящему изобретению осуществляют следующим образом.

Предварительно измеряют плотность и вязкость модельной жидкости при различных значениях температуры и строят зависимости изменения вязкости и плотности модельной рабочей жидкости от температуры.

В зависимости от целей и задач исследований в качестве рабочих вязких жидкостей могут использоваться индустриальные, веретенные, трансформаторные масла, водные растворы глицерина, дизельное топливо и смеси его с мазутом, эмульсии и др. В качестве примера на фиг. 1 приведены зависимости плотности и динамической вязкости рабочей жидкости - индустриального масла И-8А от температуры.

При проведении исследований сначала открывают задвижку 7, а затем запускают насос 4. Вязкая рабочая жидкость поступает из бака 3 по всасывающей линии 5 в приводимый в действие от электродвигателя 2 насос 4, который нагнетает жидкость по выкидной линии 6 обратно в бак 3. Различные режимы работы насоса 4 создают путем изменения давления на выходе из насоса с помощью задвижки 8, а также изменения частоты вращения вала насоса 4 с помощью частотного преобразователя информационно-измерительной системы 1.

В процессе замкнутого цикла циркуляции модельной вязкой жидкости через исследуемый насос она постепенно нагревается. За счет нагрева рабочей жидкости уменьшается ее вязкость. Замеры параметров работы насоса 4 с помощью информационно-измерительной системы 1 осуществляют в непрерывном режиме при изменяющейся во времени температуре. По результатам замеров строят зависимости подачи, напора, потребляемой мощности и КПД насоса от температуры на приеме. В качестве примера на фиг. 3 приведена зависимость подачи насоса от температуры жидкости у входа в насос на одном из исследуемых режимов.

Как видно из данного графика, для каждого конкретного значения температуры можно найти соответствующее значение подачи (например, для температуры 30°C подача составит 57,6 м3/сут). Зная температуру рабочей жидкости, по полученным предварительно зависимостям (см. фиг. 1) определяют ее плотность и вязкость.

Затем полученные зависимости параметров насоса 4 от температуры перестраивают в зависимости характеристик насоса от вязкости. В качестве примера на фиг. 4 показаны напорные характеристики погружного центробежного насоса ЭЦН при различных значениях вязкости жидкости μ1, μ2 и μ3.

Имея набор снятых напорно-энергетических характеристик в условиях изменения температуры рабочей жидкости, можно осуществить пересчет на различные значения вязкости.

При необходимости исследования нескольких различных насосов после завершения испытаний одного из них закрывают задвижки 7 и 8, снимают один, ставят другой насос и проводят исследования его характеристик.

Таким образом, предложенный способ позволяет проводить достоверные испытания на более высоком уровне в широком диапазоне изменения параметров при существенном сокращении времени проведения и трудоемкости экспериментов при исследованиях погружных центробежных насосов для добычи нефти.

Способ испытаний погружных центробежных насосов, включающий осуществление замкнутого цикла циркуляции модельной вязкой жидкости через исследуемый насос и регулирование режимов работы насоса с одновременным контролем параметров насоса, отличающийся тем, что предварительно измеряют плотность и вязкость модельной жидкости при различных значениях температуры и строят зависимости изменения вязкости и плотности модельной рабочей жидкости от температуры, затем в процессе замкнутого цикла циркуляции модельной вязкой жидкости через исследуемый насос производят регулирование режимов работы насоса путем изменения давления на выходе насоса и изменения частоты вращения вала, при этом одновременно в непрерывном режиме производят замеры параметров работы насоса на неустановившихся режимах при изменяющейся во времени температуре, по результатам замеров строят зависимости подачи, напора, потребляемой мощности и КПД насоса от температуры на приеме, по зафиксированным значениям температуры модельной жидкости, используя предварительно полученные зависимости вязкости и плотности модельной рабочей жидкости от температуры, определяют ее плотность и вязкость, после чего по полученным зависимостям подачи, напора, потребляемой мощности и КПД насоса от вязкости на различных режимах строят напорно-расходные и энергетические характеристики насоса при различных значениях вязкости.



 

Похожие патенты:

Изобретение относится к нефтяному машиностроению, а именно к погружным многоступенчатым центробежным насосам с изделиями из полимерных материалов, и может быть использовано в насосах для подъема пластовой жидкости из нефтяных скважин с повышенным содержанием механических примесей, в том числе солей, с переменной вязкостью.

Изобретение относится к области нефтяного машиностроения, в частности к многоступенчатым погружным лопастным насосам для добычи нефти. Открытое рабочее колесо ступени центробежного насоса содержит ступицу, имеющую возможность свободного перемещения вдоль вала насоса, ведущий диск с расположенными на одной из его плоских поверхностей лопастями, образующими проточные каналы, и индивидуальную опорную пяту на обеих поверхностях диска в виде антифрикционной износостойкой шайбы.

Изобретение относится к насосостроению, а именно к погружным скважинным электрическим насосам, и предназначено для откачки сред из скважин со значительным отклонением от прямолинейности.

Группа изобретений относится к нефтяному машиностроению, в частности к насосам для откачки пластовой жидкости из скважин. Установка содержит: двигатель, протектор с осевой опорой вала и по крайней мере одну насосную секцию.

Изобретение относится к нефтяному машиностроению и может быть использовано для откачки из скважин пластовой жидкости с высоким содержанием газа. Мультифазная ступень погружного многоступенчатого центробежного насоса содержит направляющий аппарат, состоящий из корпуса в виде обечайки с буртом и нижнего и верхнего дисков с лопатками, и рабочее колесо, состоящее из ведущего и ведомого дисков с лопастями.

Группа изобретений относится к многоступенчатым погружным насосам для откачки пластовой жидкости из скважин. Установка погружного лопастного насоса компрессионного типа включает в себя двигатель, протектор с осевой опорой вала, насосную секцию.

Изобретение относится к насосостроению и касается сборки модульного скважинного насоса. Насос содержит насосные модули с соединительными деталями, снабженными муфтой и выполненными в виде вилки.

Группа изобретений относится к нефтяному машиностроению и, в частности, к эксплуатации скважин с использованием многоступенчатых погружных насосов для откачки пластовой жидкости из скважин.

Изобретение относится к управлению погружными электронасосными установками для добычи нефти из скважин. Управляемая система содержит согласующий трансформатор, кабельную линию, регулирующий штуцер, трубопроводный обратный клапан, первый патрубок, муфтовый переводник, насосно-компрессорные трубы, сбивной клапан, скважинный обратный клапан, второй патрубок, ловильную головку, погружной электроцентробежный насос, газосепаратор, протектор, погружной электродвигатель, фильтр и систему управления.

Группа изобретений относится к нефтедобывающей промышленности и может быть использовано при добыче нефти из скважин с высоким содержанием газа и абразивных частиц.

Изобретение относится к области нефтедобычи, в частности к системам диагностики скважинных штанговых насосных установок. Сущность изобретения состоит в том, что сравнивают эталонное значение среднеквадратического отклонения полной мощности и значение среднеквадратического отклонения полной мощности, определенное из произведения действующих значений тока и напряжения, вычисленных с учетом условия минимального или максимального смещения штока от точки подвеса и условия не равенства нулю производной значения давления, вычисленных по значениям перемещения штока и давления.

Изобретение относится к области эксплуатации нефтяных месторождений. Техническим результатом является увеличение эффективности перекачивания нефти из пласта.

Изобретение относится к гидромашиностроению и направлено на повышение информативности диагностирования насоса. Способ включает проведение последовательных испытаний, дросселирование потока жидкости на выходе из насоса до заданного значения расхода, измерение изменения температуры жидкости на выходе из насоса за заданный промежуток времени и перепада давлений на насосе, определение величин диагностических параметров и оценку по измеренным величинам параметров при различных испытаниях технического состояния насоса.

Изобретение относится к гидромашиностроению и может быть использовано при оценке технического состояния гидромашины в условиях эксплуатации. Способ диагностирования гидромашины включает периодический вывод гидромашины на испытательный режим с непрерывным изменением угловой скорости вращения вала, например, выключением привода гидромашины.

Изобретение относится к области диагностики, а именно к способам оценки технического состояния машин по вибрации корпуса, и может быть использовано при эксплуатации машинных комплексов для предупреждения внезапных отказов и аварий машин в нефтеперерабатывающей и других отраслях промышленности.

Изобретение относится к гидромашиностроению. Устройство содержит входной и выходной патрубки (2), (3) насоса (1), датчики (4), (6) давления, установленные во входном и выходном патрубках (2), (3), компаратор (10), индикатор (11), блок (12) управления, счетчик (13) времени, блок (14) запрета, вычислительное устройство (15) и блок (16) индикации.

Изобретение относится к энергетическому машиностроению и может быть использовано при техническом диагностировании состояния центробежных насосов. Способ определения КПД насоса включает прокачивание рабочей жидкости через насос, установление режима работы насоса с номинальным напором, отбор и дросселирование части перекачиваемой рабочей жидкости до давления на входе, измерение давления жидкости на входе и выходе из насоса, измерение температуры жидкости на входе насоса и в дросселированном потоке и вычисление КПД по измеренным параметрам.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для вибродиагностики машин. Cпособ диагностики машин по косвенным признакам, преимущественно по вибрации корпуса, включает измерение вибрации в информативной точке корпуса машины, восстановление функции распределения вероятности вибрации, по параметрам которой судят о наличии и уровне неисправностей и/или дефектов машины, запоминают временную реализацию вибрации, преобразуют ее в реализацию, значения которой соответствуют оптимальному для диагностики вибропараметру, восстанавливают функцию распределения вероятности мгновенных значений оптимального для диагностики параметра вибрации в текущем измерении, определяют значение выборочного квантиля параметра вибрации при заданной величине функции распределения вероятности, по которому судят о наличии и уровне неисправностей и/или дефектов машины.

Изобретение относится к области машиностроения, в частности к стендам для испытаний торцовых уплотнений валов циркуляционных насосов. Стенд для испытаний торцовых уплотнений валов циркуляционных насосов содержит постамент с силовым корпусом.

Группа изобретений относится к испытаниям газосепараторов, обеспечивающих работу погружных нефтяных насосов в условиях повышенного газосодержания. Способ испытаний газосепараторов включает нагнетание жидкости и газа в затрубное пространство модели обсадной колонны, формирование рабочей жидкости в виде газожидкостной смеси, разделение газожидкостной смеси с помощью испытуемого газосепаратора на дегазированную жидкость и свободный газ.

Изобретение относится к гидромашиностроению и может быть использовано при оценке технического состояния гидромашин. Устройство содержит датчик давления 1, установленный в напорной магистрали, датчик числа оборотов 3 вращения вала гидромашины, датчик регистрации отключения гидромашины 4, блок управления 5, включающий последовательно соединенные элемент задержки и формирователь разрешающего сигнала, элемент запрета 6, дифференцирующий блок 7, блок сравнения 8 и блок индикации 9. Датчик регистрации 4 отключения гидромашины соединен с блоком управления 5. Выходы датчика давления 1, датчика числа оборотов 3 и блока управления 5 соединены с элементом запрета 6, выход которого в свою очередь через последовательно соединенные дифференцирующий блок 7 и блок сравнения 8 соединен с блоком индикации 9. Устройство снабжено датчиком расхода 2, установленным в напорной магистрали 1, выход которого соединен с элементом запрета 6 для обеспечения возможности определения объемных потерь гидромашины. Изобретение направлено на повышение информативности контроля технического состояния гидромашины. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано при стендовых испытаниях погружных центробежных насосов для добычи нефти. Способ испытаний насосов включает осуществление цикла циркуляции модельной вязкой жидкости через исследуемый насос и регулирование режимов работы насоса с одновременным контролем параметров насоса. При этом предварительно измеряют плотность и вязкость модельной жидкости при различной температуре и строят зависимости последних от температуры. Производят регулирование режимов работы путем изменения частоты вращения вала. При этом одновременно непрерывно производят замеры параметров работы насоса на неустановившихся режимах при изменяющейся во времени температуре. По результатам замеров строят зависимости подачи, напора, потребляемой мощности и КПД насоса от температуры на приеме, а затем перестраивают их в зависимости подачи, напора, потребляемой мощности и КПД насоса от вязкости на различных режимах. По этим зависимостям строят напорно-расходные и энергетические характеристики насоса при различных значениях вязкости. Изобретение позволяет упростить процесс исследования, сократить время и трудоемкость испытаний, обеспечить проведение исследований при переменной температуре на входе в насос, расширить спектр исследуемых характеристик насоса. 4 ил.

Наверх