Способ для измерения параметров дыхания и устройство для его осуществления

Группа изобретений относится к области медицинской техники и может быть использована для измерения и мониторинга амплитудных и частотно-временных характеристик дыхания. Устройство для измерения параметров дыхания включает последовательно соединенные таймер, блок обработки и оптический сканирующий датчик, размещенный в направляющей, прикрепленной с помощью кронштейна к кушетке. Через направляющую проходит нерастяжимый шнур, опоясывающий грудную клетку пациента. Один конец нерастяжимого шнура крепится к кушетке, на которой лежит пациент, а другой конец нерастяжимого шнура соединяется с упругим элементом, который также крепиться к кушетке. Способ измерения параметров дыхания заключается в том, что оптический сканирующий датчик непрерывно во времени регистрирует перемещение участка не растяжимого шнура, определяемое движением грудной клетки пациента в процессе дыхания, и передает данные о перемещении не растяжимого шнура на блок обработки, который выполняет вычисление относительных перемещений грудной клетки во времени путем привязки текущего положения участка не растяжимого шнура к временному интервалу, информация о котором поступает от таймера, с целью расчета значений амплитудных и частотно-временных параметров дыхания. Технический результат состоит в обеспечении недорогого, простого измерения параметров дыхания, неинвазивного, комфортного для пациента и обладающего относительно высокой точностью. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к области медицинской техники и может быть использовано для измерения и мониторинга амплитудных и частотно-временных характеристик дыхания.

Известен способ и устройство [1] регистрации артериального пульса и частоты дыхания, включающие регистрацию перемещения тканей участка тела, обусловленных комбинированным воздействием кровотока и дыхания с последующим выделением полезного сигнала, отличающийся тем, что участок тела дистанционно облучают электромагнитными волнами сверхвысокой частоты в диапазоне 10-100 ГГц доплеровским локатором, отфильтровывают низкочастотные составляющие, обусловленные перемещениями исследуемого участка, раскладывают сигнал на квадратурные составляющие и регистрируют изменение фазы сигнала. Недостатками способа и реализующего его устройства являются высокая сложность программно-аппаратной реализации, крайне низкая чувствительность, которая выражается в малом доплеровском сдвиге частот относительно частоты излучения, наличие воздействия электромагнитного излучения на пациента в области сверхвысоких частот.

Также известен способ и реализующее его устройство [2] регистрации ритмов дыхания, включающий дистанционное облучение участков тела пациента сигналом и обработку излученного и отраженного сигналов для выделения дыхательной и пульсовой составляющих, отличающийся тем, что облучение производят суммой двух ультразвуковых сигналов с различающимися частотами f1 и f2, разность между которыми связывают с колебаниями участков тела пациента, после чего измеряют текущие изменения фазового сдвига между огибающими переданного и отраженного сигналов, соответствующего колебаниям участка тела пациента, и в результате обработки результатов измерений выделяют ритмы дыхания и сердцебиения. Недостатками способа и реализующего его устройства являются повышенные требования к точности позиционирования источника и приемника ультразвукового излучения, зависимость фазового сдвига от качества отражающей поверхности, влияние переотраженного сигнала на точность определении микроперемещений тела пациента в процессе дыхания.

Наиболее близким к заявляемому является способ, реализованный в устройстве для измерения частоты дыхания [3], в котором используется датчик силы, размещенный между эластичным ремнем и основанием пряжки с фторопластовой направляющей, причем угол между плоскостью фторопластовой направляющей и плоскостью датчика должен быть выдержан с учетом коэффициента трения ремня о фторопластовую направляющую. В процессе дыхания оператора его грудная клетка расширяется и сжимается в такт вдоха и выдоха. При этом эластичный ремень то удлиняется, то сжимается, а усилия, возникающие в ремне с различной силой, сжимают датчик силы. Частота изменений усилий, выдаваемая датчиком силы, соответствует частоте дыхания оператора. Недостатками изобретения является необходимость наличия специального конструктивного элемента - пряжки, обеспечивающей требуемый угол между плоскостью фторопластовой направляющей и плоскостью датчика, а также высокая стоимость датчиков силы работающих на сжатие и обладающих допустимой для использования в указанном устройстве чувствительностью и точностью.

Результат изобретения - это возможность реализации недорогого, конструктивно простого устройства измерения параметров дыхания, неинвазивного, комфортного для пациента и обладающего относительно высокой точностью. Указанное достигается за счет использования оптического сканирующего датчика, расположенного в направляющей и регистрирующего перемещение участка не растяжимого шнура, опоясывающего грудную клетку пациента. Взаиморасположение элементов устройства и грудной клетки пациента в аксиальной плоскости представлено на чертеже.

Устройство содержит таймер 1, блок обработки 2, оптический сканирующий датчик 3, направляющую 4, кронштейн 5, не растяжимый шнур 6, упругий элемент 7, кушетку 8. К блоку обработки 2 подключен таймер 1 и оптический сканирующий датчик 3. Направляющая 4 с помощью кронштейна 5 крепится к кушетке 8. Оптический сканирующий датчик 3 устанавливается внутрь направляющей 4. Не растяжимый шнур 6 опоясывает грудную клетку пациента 9, крепиться одним концом к кушетке 8, а другим к упругому элементу 7. При этом не растяжимый шнур 6 проходит сквозь направляющую 4. Упругий элемент 7 также прикреплен к кушетке 8. В исходном состоянии выдоха упругий элемент 7 растянут на минимальную величину, достаточную для плотного прилегания не растяжимого шнура 6 к грудной клетке пациента 9. Упругий элемент 7 растягивается при вдохе и сжимается при выдохе, а участок не растяжимого шнура 6 осуществляет перемещение, которое непрерывно во времени регистрируется оптическим сканирующим датчиком 3 и передается на блок обработки 2, где выполняется вычисление амплитудных и частотно-временных характеристик дыхания, с учетом временных интервалов, фиксируемых таймером 1.

Контакт не растяжимого шнура 6 с телом пациента 9 осуществляется без инвазивного вмешательства. При практическом исполнении изобретения в качестве оптического сканирующий датчика 3 может быть взят стандартный оптический датчик компьютерной мыши, например ADNS-5050 (Avago Technologies), обладающей относительно высокой разрешающей способностью более 800 точек на дюйм и цифровым интерфейсом, обеспечивающим передачу сведений о перемещении участка не растяжимого шнура 6 на блок обработки 2, реализация которого возможна, например, посредством типового микроконтроллера. В качества не растяжимого шнура 6 может быть использован не эластичный ремень регулируемой длины, настраиваемый с учетом размера грудной клетки конкретного человека в состоянии исходного положение выдоха.

Таким образом, предложены способ и устройство для его осуществления, заключающийся в непрерывной регистрации с помощью оптического сканирующего датчика перемещений участка не растяжимого шнура 6 во времени, где время измеряется с помощью таймера, что в конечном итоге позволяет регистрировать движение грудной клетки человека в процессе дыхания и вычислять амплитудные и частотно-временные характеристики дыхания.

1. Устройство для измерения параметров дыхания, включающее в свой состав последовательно соединенные таймер, блок обработки и оптический сканирующий датчик, размещенный в направляющей, прикрепленной с помощью кронштейна к кушетке, кроме того, через направляющую проходит нерастяжимый шнур, опоясывающий грудную клетку пациента, при этом один конец нерастяжимого шнура крепиться к кушетке, на которой лежит пациент, а другой конец нерастяжимого шнура соединяется с упругим элементом, который также крепиться к кушетке.

2. Способ измерения параметров дыхания, заключающийся в том, что оптический сканирующий датчик непрерывно во времени регистрирует перемещение участка нерастяжимого шнура, определяемое движением грудной клетки пациента в процессе дыхания, и передает данные о перемещении нерастяжимого шнура на блок обработки, который выполняет вычисление относительных перемещений грудной клетки во времени путем привязки текущего положения участка нерастяжимого шнура к временному интервалу, информация о котором поступает от таймера, с целью расчета значений амплитудных и частотно-временных параметров дыхания.



 

Похожие патенты:

Изобретение относится к медицинской технике. Непосредственно после размещения воздуховода и/или после любого перемещения пациента в устройстве отслеживания CO2 может быть активирована автоматизированная программа, чтобы обеспечить проверку размещения воздуховодного устройства.

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для диагностики ранних стадий микроангиопатии у больных сахарным диабетом. Для этого проводят капилляроскопию в покое с последующей оценкой структурных изменений состояния капилляров.

Изобретение относится к медицине и может быть использовано для подбора индивидуальной диетотерапии в лечебно-профилактических учреждениях. Для этого пациент в течение 7 суток ведет дневник профиля физической активности с регистрацией времени пассивного и активного времени суток taкт, tпac..
Изобретение относится к медицине, а именно к пульмонологии и акушерству. Для этого на 29-36 неделях беременности у больных БА легкой степени тяжести во внеприступный период с помощью спирографии определяют пиковую объемную скорость форсированного выдоха (МОСпик, л/сек).

Изобретение относится к медицине, а именно к диагностике непереносимости лактозы. Для этого проводят выявление водорода в воздухе ротовой полости обследуемого и диагностику синдрома избыточного бактериального роста (СИБР) путем определения исходного содержания водорода до приема тестовой нагрузки с последующим определением нагрузочных содержаний водорода через 15 и 30 мин после приема тестовой нагрузки.

Изобретение относится к медицине, а именно к анестезиологии и интенсивной терапии, и может быть использовано при необходимости оценки степени метаболической и кардиореспираторной адаптации пациента.
Изобретение относится к медицине, а именно к пульмонологии, и может быть использовано для прогнозирования контроля течения бронхиальной астмы (БА). .
Изобретение относится к медицине, а именно к хирургии, анестезиологии, реаниматологии, и может быть использовано для профилактики и прогнозирования риска развития респираторных нарушений у больных грыжами передней брюшной стенки в послеоперационном периоде.

Изобретение относится к медицине, а именно терапии и эндоскопическим методам исследования, и может быть использовано во время проведения бронхоскопического исследования.

Изобретение относится к медицине, в частности к пульмонологии и педиатрии, и касается дифференциальной диагностики заболевания у детей до 5 лет с повторными рецидивами бронхиальной обструкции. Для этого обследование ребенка проводят не ранее чем через один месяц после купирования клинических проявлений бронхиальной обструкции. При этом исследуют уровень СО выдыхаемого воздуха в ppm, а также акустический компонент работы дыхания (АКРД) в мкДж методом компьютерной бронхофонографии до и через 40 минут после ингаляции бронхолитика в возрастной дозе. При значениях уровня СО 3,0 ppm и более, АКРД до ингаляции бронхолитика 0,2 мкДж и более, наличии обратимости бронхообструкции, т.е. при снижении АКРД по сравнению с исходным уровнем после ингаляции бронхолитика устанавливают диагноз бронхиальной астмы. При значениях уровня СО менее 3,0 ppm, АКРД до ингаляции бронхолитика 0,2 мкДж и более, наличии обратимости бронхообструкции устанавливают диагноз вторичной гиперреактивности бронхиального дерева после перенесенного обструктивного бронхита. При значениях уровня СО менее 3,0 ppm, АКРД менее 0,2 мкДж устанавливают выздоровление после обструктивного бронхита. Способ позволяет повысить качество диагностики бронхиальной астмы у детей до 5 лет. 1 ил., 3 пр., 5 табл.
Наверх