Способ изготовления фильтрующего материала

Изобретение относится к способам изготовления фильтрующих мембранных материалов. Способ изготовления включает формирование на пористой подложке из нержавеющей стали, имеющей толщину 150-250 мкм и средний размер пор 2-10 мкм, селективного слоя из титана толщиной 1-10 мкм. Формирование селективного слоя осуществляют путем очистки подложки ионами аргона в тлеющем разряде в вакуумной камере с последующим нанесением слоя металлического титана методом магнетронного ионно-плазменного напыления. Нанесение осуществляют при давлении 0,4-0,5 Па, токе разряда 4-4,2 А, напряжении разряда 450-500 В до требуемой толщины слоя титана. Техническим результатом является повышение максимально допустимой температуры эксплуатации полученного материала по сравнению с двухслойными материалами на органической подложке. 5 пр.

 

Изобретение относится к мембранной технологии, в частности к способам изготовления фильтрующих материалов, и касается способов изготовления двухслойных ультра- и нанофильтрационных мембран на металлической подложке, которые могут быть использованы для ультра- и нанофильтрации биологически активных сред, высокотемпературных и химически активных сред, для мембранной стерилизации жидких и газообразных сред, обессоливания минерализованных вод. Использование в качестве компонентов фильтрующего материала нержавеющей стали и титана обеспечивает высокую химическую стойкость мембраны и позволяет использовать такой фильтрующий материал для очистки высокотемпературных и агрессивных сред.

Известен способ изготовления фильтрующего материала (RU 2381824, B01D 71/02, B01D 39/20, Способ получения неорганического мембранного материала с плакирующим слоем, опубл. 20.02.2010), заключающийся в нанесении неорганического геля на крупнопористую подложку, сушке геля и термообработке и последующем нанесении на полученную структуру плакирующего оксидного слоя путем обработки концентрированным раствором солей, выбранных из ряда: нитрат алюминия, гидроксонитрат циркония, нитрат никеля или их смесь, и последующей термообработки при 350-600°С.

Недостатками известного способа являются низкая гибкость получаемого фильтрующего материала и многостадийность процесса изготовления.

Известен способ изготовления фильтрующего материала (RU 2040371, B22F 7/04, Способ изготовления фильтрующего материала, опубл. 25.07.1995), заключающийся в том, что на пористую металлическую подложку толщиной 120-200 мкм с размерами не более 10 мкм наносится суспензия порошка материала селективного слоя (выбранного из группы, содержащей оксиды, нитриды, карбиды, бориды или их смеси), после чего проводят сушку и прикатку нанесенного слоя при давлении 50-100 МПа и спекание при температуре 0,3-0,4 от температуры плавления керамического порошка.

Недостатком известного способа является сложность процесса изготовления и низкая гибкость получаемого фильтрующего материала.

Наиболее близким по технической сущности к заявляемому является способ изготовления фильтрующего элемента (RU 2148679, С23С 14/20, B01J 20/32, Фильтрующий элемент и способ его изготовления, опубл. 10.05.2000), заключающийся в том, что на пористую полимерную подложку, помещенную на планетарном приспособлении в рабочей камере, методом плазмохимического напыления электродуговым испарением наносится материал катода. При этом расходуемые катоды могут быть выполнены из титана, циркония, гафния, хрома, алюминия, никеля или нержавеющей стали.

Недостатком известного метода является использование органического материала в качестве материала пористой подложки, что приводит к ограниченности температурного диапазона использования такого фильтрующего материала (не более 260°С при использовании политетрафторэтилена в качестве подложки) и ограничению срока эксплуатации такого материала.

Техническим результатом данного изобретения является повышение максимально допустимой температуры эксплуатации и фильтрующего материала в сравнении с двухслойными фильтрующими материалами на органической подложке.

Этот технический результат достигается способом изготовления фильтрующего материала, включающем формирование на пористой подложке из нержавеющей стали толщиной 150-250 мкм со средним размером пор 2-10 мкм селективного слоя из титана толщиной 1-10 мкм. Формирование селективного слоя осуществляют путем очистки подложки ионами аргона в тлеющем разряде в вакуумной камере в течение 10-15 минут и нанесения слоя металлического титана методом магнетронного ионно-плазменного напыления при давлении 0,4-0,5 Па, токе разряда 4-4,2 А, напряжении разряда 450-500 В до требуемой толщины слоя.

В соответствии с изобретением на пористой металлической подложке методом магнетронного ионно-плазменного напыления формируют селективный металлический слой. В качестве материала подложки и металлического селективного слоя предпочтительно выбирается титан, коррозионно-стойкая сталь. Использование данных материалов делает возможным применение мембран на их основе для фильтрации коррозионно-активных сред, таких как среды биотехнологических, химических, фармацевтических и других производств.

Пример 1

Предлагаемый способ осуществляют следующим образом. Пористую подложку из нержавеющей стали толщиной 250 мкм со средним размером пор 10 мкм помещают в вакуумную камеру, производят вакуумирование камеры до давления 5 мПа. Затем заготовку нагревают излучением до температуры 350°С. Финальная очистка заготовки осуществляется ионами аргона в тлеющем разряде при напряжении смещения 1500 В в течение 15 минут. Затем устанавливается давление 0,4 Па, и методом магнетронного ионно-плазменного напыления производится нанесение металлического селективного слоя. Ток разряда: 4 А, напряжение разряда 450 В. Заготовка располагается перпендикулярно потоку ионов. Дистанция от источника ионов до заготовки - 100 мм. Напыление проводят до достижения толщины слоя металлического титана 10 мкм.

Размер пор селективного слоя при этом составляет 3,4 мкм. Критический радиус сгибания полученного материала составляет 10 мм. Термостатирование при 300°С на воздухе в течение 200 часов не приводит к изменению массы, внешнего вида и поровой структуры фильтрующего материала.

Пример 2

Пористую подложку из нержавеющей стали толщиной 150 мкм со средним размером пор 6 мкм помещают в вакуумную камеру, производят вакуумирование камеры до давления 6 мПа. Затем заготовку нагревают излучением до температуры 400°С. Финальная очистка заготовки осуществляется ионами аргона в тлеющем разряде при напряжении смещения 1700 В в течение 10 минут. Затем устанавливается давление 0,4 Па, и методом магнетронного ионно-плазменного напыления производится нанесение металлического селективного слоя. Ток разряда: 4 А, напряжение разряда 450 В. Заготовка располагается перпендикулярно потоку ионов. Дистанция от источника ионов до заготовки - 100 мм. Напыление проводят до достижения толщины слоя металлического титана 10 мкм.

Размер пор селективного слоя при этом составляет 0,26 мкм. Критический радиус сгибания полученного материала составляет 8 мм. Термостатирование при 300°С на воздухе в течение 200 часов не приводит к изменению массы, внешнего вида и поровой структуры фильтрующего материала.

Пример 3

Пористую подложку из нержавеющей стали толщиной 200 мкм со средним размером пор 6 мкм помещают в вакуумную камеру, производят вакуумирование камеры до давления 5 мПа. Затем заготовку нагревают излучением до температуры 350°С. Финальная очистка заготовки осуществляется ионами аргона в тлеющем разряде при напряжении смещения 1700 В в течение 15 минут. Затем устанавливается давление 0,5 Па, и методом магнетронного ионно-плазменного напыления производится нанесение металлического селективного слоя. Ток разряда: 4,2 А, напряжение разряда 500 В. Заготовка располагается перпендикулярно потоку ионов. Дистанция от источника ионов до заготовки - 100 мм. Напыление проводят до достижения толщины слоя металлического титана 10 мкм.

Размер пор селективного слоя при этом составляет 0,26 мкм. Критический радиус сгибания полученного материала составляет 9 мм. Термостатирование при 300°С на воздухе в течение 200 часов не приводит к изменению массы, внешнего вида и поровой структуры фильтрующего материала.

Пример 4

Пористую подложку из нержавеющей стали толщиной 200 мкм со средним размером пор 2 мкм помещают в вакуумную камеру, производят вакуумирование камеры до давления 5 мПа. Затем заготовку нагревают излучением до температуры 350°С. Финальная очистка заготовки осуществляется ионами аргона в тлеющем разряде при напряжении смещения 1700 В в течение 15 минут. Затем устанавливается давление 0,4 Па, и методом магнетронного ионно-плазменного напыления производится нанесение металлического селективного слоя. Ток разряда: 4 А, напряжение разряда 450 В. Заготовка располагается перпендикулярно потоку ионов. Дистанция от источника ионов до заготовки - 100 мм. Напыление проводят до достижения толщины слоя металлического титана 1 мкм.

Размер пор селективного слоя при этом составляет 1,3 мкм. Критический радиус сгибания полученного материала составляет 12 мм. Термостатирование при 300°С на воздухе в течение 200 часов не приводит к изменению массы, внешнего вида и поровой структуры фильтрующего материала.

Пример 5

Пористую подложку из нержавеющей стали толщиной 200 мкм со средним размером пор 2 мкм помещают в вакуумную камеру, производят вакуумирование камеры до давления 5 мПа. Затем заготовку нагревают излучением до температуры 350°С. Финальная очистка заготовки осуществляется ионами аргона в тлеющем разряде при напряжении смещения 1700 В в течение 15 минут. Затем устанавливается давление 0,4 Па, и методом магнетронного ионно-плазменного напыления производится нанесение металлического селективного слоя. Ток разряда: 4 А, напряжение разряда 450 В. Заготовка располагается перпендикулярно потоку ионов. Дистанция от источника ионов до заготовки - 100 мм. Напыление проводят до достижения толщины слоя металлического титана 6 мкм.

Размер пор селективного слоя при этом составляет 0,3 мкм. Критический радиус сгибания полученного материала составляет 9 мм. Термостатирование при 300°С на воздухе в течение 200 часов не приводит к изменению массы, внешнего вида и поровой структуры фильтрующего материала.

Фильтрующий материал, изготовленный при помощи описанного способа, обладает улучшенной стойкостью к действию высоких температур в сравнении с двухслойными фильтрующими материалами на органической подложке. Термостатирование при 300°С на воздухе в течение 200 часов не приводит к изменению массы, внешнего вида и поровой структуры фильтрующего материала. Максимальные температуры эксплуатации для мембран, подложки которых выполнены из полиэтилена, полипропилена и политетрафторэтилена, составляют соответственно 100, 150 и 260°С.

Способ изготовления фильтрующего материала, включающий формирование на пористой подложке селективного слоя методом напыления материала катода, выполненного из титана, отличающийся тем, что в качестве пористой подложки используют нержавеющую сталь толщиной 150-250 мкм со средним размером пор 2-10 мкм, формирование селективного слоя осуществляют путем очистки подложки ионами аргона в тлеющем разряде в вакуумной камере в течение 10-15 минут и нанесения слоя металлического титана методом магнетронного ионно-плазменного напыления при давлении 0,4-0,5 Па, токе разряда 4-4,2 А, напряжении разряда 450-500 В до толщины селективного слоя 1-10 мкм.



 

Похожие патенты:

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом синтезе.
Изобретение относится к мембранной технологии, в частности к фильтрующим материалам для ультра- и нанофильтрации. Предложен материал, состоящий из пористой металлической подложки с размером пор 1,2-5,5 мкм, изготовленной из нержавеющей стали, керамического слоя ТiO2 с размером пор 0,2-0,25 мкм и толщиной 10-15 мкм и слоя металлического титана толщиной 0,1-0,6 мкм с размером пор 3-150 нм, напыленного на поверхность керамического слоя.

Изобретение относится к области мембранного газоразделения. Способ фракционирования смесей низкомолекулярных углеводородов, характеризующийся тем, что разделение сырьевой смеси на пермеат и ретентат осуществляют на микропористой мембране, обладающей однородной пористостью с диаметром пор в диапазоне 5-250 нм, при этом температуру мембраны и пермеата, а также давление на стороне пермеата поддерживают ниже температуры и давления подаваемой сырьевой смеси с обеспечением капиллярной конденсации компонентов смеси в микропорах мембраны.

Изобретение относится к области мембранных технологий и касается устройств, осуществляющих выделение кислорода из смеси газов на керамических мембранах со смешанной ионно-электронной проводимостью.

Изобретение относится к технологии получения композитной формованной мембраны на основе неорганических природных силикатов и может быть использовано в химической, пищевой, фармацевтической и других отраслях промышленности, где существует необходимость в очистке растворов, требующих обеззараживания.

Изобретение относится к области водородной энергетики, выделения водорода из газовых смесей, получения особо чистого водорода. Мембрана для отделения водорода состоит из подложки, выполненной из пористого никелида алюминия и трехслойного покрытия.

Изобретение относится к протонпроводящей мембране, содержащей катализатор дегидрирования и смешанный оксид металлов формулы (II) где молярное отношение а:b составляет от 4,8 до 6, предпочтительно от 5,3 до 6, с находится в интервале от 0 до 0,5b, и у является таким числом, что формула (II) является незаряженной, например 0≤y≤1,8.

Изобретение относится к устройству разделения текучей среды. Способ и устройство разделения текучей среды, осуществляющее селективное отделение определенного текучего компонента от смешанной текучей среды и содержащее: кожух, который включает в себя впуск для смешанной текучей среды, выпуск для отделенной текучей среды, через который отводят селективно отделенную текучую среду, и выпуск для оставшейся текучей среды, через который отводят текучую среду, оставшуюся после осуществления селективного отделения; и разделительный модуль, в котором расположен набор из множества установленных последовательно разделяющих элементов, каждый из разделяющих элементов снабжен каналом, через который смешанная текучая среда поступает в осевом направлении, и осуществляет селективное отделение определенного текучего компонента в виде поперечного потока, перпендикулярного направлению течения смешанной текучей среды, при этом разделительный модуль является вставляемым в кожух через конец кожуха, при этом разделительный модуль включает в себя: первое соединительное приспособление, расположенное между соседними разделяющими элементами так, чтобы изолировать пространство вокруг наружных периферийных поверхностей разделяющих элементов от пространства между разделяющими элементами, причем первое соединительное приспособление имеет отверстие, через которое каналы соединены друг с другом, и имеет дискообразную форму, наружный диаметр которой больше наружного диаметра разделяющих элементов, второе соединительное приспособление, расположенное на двух концах набора из множества установленных последовательно разделяющих элементов так, что каждое второе соединительное приспособление изолирует пространство рядом с концевой поверхностью набора установленных последовательно разделяющих элементов от пространства вокруг наружных периферийных поверхностей разделяющих элементов, каждое второе соединительное приспособление имеет отверстие, через которое пространство рядом с концевой поверхностью соединяется с соответствующим одним из каналов, и соединительное средство, которое соединяет первое и вторые соединительные приспособления друг с другом.

Изобретение относится к области водородной энергетики, выделения водорода из газовых смесей, получения особо чистого водорода. Предложена композитная мембрана для выделения водорода из газовых смесей на основе сплавов металлов 5-й группы Периодической системы друг с другом с защитно-каталитическим покрытием на поверхности мембраны из палладия или сплавов палладия, при этом в качестве материала мембраны выбран материал с растворимостью водорода такой же, как у материала покрытия, либо отличающейся не более чем на 15%.

Настоящее изобретение относится к материалу для разделения, содержащему осажденный диоксид кремния, высушенный во вращающейся или распылительной сушилке. Диоксид кремния имеет площадь P поверхности пор, при которой log10 P>2,2, и отношение площади поверхности по BET к площади поверхности по СТАВ, измеренное до какого-либо модифицирования поверхности диоксида кремния, составляющее по меньшей мере 1,0.

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в химическом синтезе. Интегрированный мембранно-каталитический реактор представляет собой полый цилиндрический корпус, в нижней части которого расположены входной патрубок для подачи сырья и патрубок с карманом для термопары, а в верхней части расположен отводной патрубок и пористый керамический каталитический конвертер, закрепленный с помощью отвинчивающейся крышки, причем с отводным патрубком соединены газовая линия для вывода ультрачистого водорода, газовая линия для вывода синтез-газа и остальных продуктов и газовая линия для ввода газа-носителя. При этом кталитический конвертер изготовлен из материала, полученного самораспространяющимся высокотемпературным синтезом из шихты состава, мас.%: Ni - 45, Al - 5, Co3O4 - 50, и восстановленного в токе водорода и представляет собой трубку с глухим верхним концом, в центральном канале которого установлена водородселективная мембрана на основе палладийсодержащего сплава в виде скрученной в спираль тонкостенной трубки с возможностью вывода через нее ультрачистого водорода в отводной патрубок. Изобретение обеспечивает получение ультрачистого водорода с высоким выходом и синтез-газа в одной установке и в одном процессе. 2 н. и 4 з.п. ф-лы, 2 ил., 8 табл., 47 пр.

Изобретение относится к технологии получения пористых мембран на основе диоксида циркония, которые могут быть использованы в качестве фильтров для очистки и разделения жидкостей и газов, носителей катализаторов в различных химических процессах. Способ получения пористых мембран включает использование в качестве исходных реагентов солей ZrO(NO3)2⋅2H2O, Y(NO3)3⋅5H2O, из которых приготавливают растворы азотнокислых солей, смеси которых выпаривают на водяной бане, а затем охлаждают при температуре 3-5°C до образования кристаллогидратов, которые прокаливают при температуре 150°C в течение 0.5 ч, затем осуществляют термическую обработку полученных рентгеноаморфных порошков t-ZrO2 в интервале температур 600-1300°C, после чего для создания поровой структуры в твердом растворе t-ZrO2 используют свежеприготовленный Al(ОН)3, при этом смешивание порообразующих компонентов осуществляют в режиме сухого помола, после чего спекание спрессованных компактов проводят при температуре 1300°C с изотермической выдержкой в 2 ч, затем полученную керамику используют в качестве пористой подложки для создания мембранного фильтра. В качестве исходного вещества используют водный раствор бемита AlO(ОН), мембранный слой AlO(ОН) наносят погружением пористых подложек в водную суспензию, затем подложки помещают в эксикатор и высушивают, далее осуществляют двухступенчатую обработку подложек с мембранным слоем при температуре 150°C в течение 0.5 ч для удаления адсорбционной воды и при температуре 500°C в течение 0.5 ч для разрушения гидроксильных связей в мембранном слое, после чего проводят заключительный обжиг при температуре 1200°C. Технический результат - обеспечение возможности регулирования открытой пористости материала, величины пор и получения заданного распределения пор по размерам. 1 з.п. ф-лы, 2 табл., 5 ил.

Изобретение относится к технологии получения пористых мембран на основе диоксида циркония, которые могут быть использованы в качестве фильтров для очистки и разделения жидкостей и газов, носителей катализаторов в различных химических процессах. Способ получения пористых мембран включает использование в качестве исходных реагентов солей ZrO(NO3)2⋅2H2O, Y(NO3)3⋅5H2O, из которых приготавливают растворы азотнокислых солей, смеси которых выпаривают на водяной бане, а затем охлаждают при температуре 3-5°C до образования кристаллогидратов, которые прокаливают при температуре 150°C в течение 0.5 ч, затем осуществляют термическую обработку полученных рентгеноаморфных порошков t-ZrO2 в интервале температур 600-1300°C, после чего для создания поровой структуры в твердом растворе t-ZrO2 используют свежеприготовленный Al(ОН)3, при этом смешивание порообразующих компонентов осуществляют в режиме сухого помола, после чего спекание спрессованных компактов проводят при температуре 1300°C с изотермической выдержкой в 2 ч, затем полученную керамику используют в качестве пористой подложки для создания мембранного фильтра. В качестве исходного вещества используют водный раствор бемита AlO(ОН), мембранный слой AlO(ОН) наносят погружением пористых подложек в водную суспензию, затем подложки помещают в эксикатор и высушивают, далее осуществляют двухступенчатую обработку подложек с мембранным слоем при температуре 150°C в течение 0.5 ч для удаления адсорбционной воды и при температуре 500°C в течение 0.5 ч для разрушения гидроксильных связей в мембранном слое, после чего проводят заключительный обжиг при температуре 1200°C. Технический результат - обеспечение возможности регулирования открытой пористости материала, величины пор и получения заданного распределения пор по размерам. 1 з.п. ф-лы, 2 табл., 5 ил.

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости. Мембрана на подложке содержит твердую пористую неорганическую фильтрационную мембрану, нанесенную на твердую пористую неорганическую подложку. Мембрана на подложке содержит наночастицы металлокоординационного полимера с CN-лигандами, содержащего катионы Mn+, где М есть переходный металл, и n равно 2 или 3; и анионы Alk+y[M'(CN)m]x-, где Alk означает щелочной металл, y равно 0, 1 или 2, М' означает переходный металл, x равно 3 или 4, и m равно 6 или 8. Указанные катионы Mn+ координационного полимера соединены металлоорганической или координационной связью с органической группой органической прививки, химически связанной с поверхностью фильтрационной мембраны, внутри пор фильтрационной мембраны и, возможно, внутри пор подложки. Способ выделения по меньшей мере одного катиона металла и твердых частиц из жидкой среды, в которой они находятся, с применением указанной мембраны на подложке, включает контакт потока жидкой среды с первой противоположной подложке стороной мембраны на подложке. Вторая часть потока жидкой среды, не прошедшая через мембрану на подложке, собирается на первой стороне мембраны и образовывает реагент, обогащенный твердыми частицами. Катион металла иммобилизован на поверхности твердой пористой неорганической фильтрационной мембраны, внутри пор мембраны и, возможно, внутри пор твердой пористой неорганической подложки. Изобретение позволяет с высокой эффективностью осуществить одновременно отделение твердых частиц и катионов металлов, в частности радиоактивных, содержащихся в жидкости. 3 н. и 25 з.п. ф-лы, 8 ил, 3 табл, 4 пр.

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости. Мембрана на подложке содержит твердую пористую неорганическую фильтрационную мембрану, нанесенную на твердую пористую неорганическую подложку. Мембрана на подложке содержит наночастицы металлокоординационного полимера с CN-лигандами, содержащего катионы Mn+, где М есть переходный металл, и n равно 2 или 3; и анионы Alk+y[M'(CN)m]x-, где Alk означает щелочной металл, y равно 0, 1 или 2, М' означает переходный металл, x равно 3 или 4, и m равно 6 или 8. Указанные катионы Mn+ координационного полимера соединены металлоорганической или координационной связью с органической группой органической прививки, химически связанной с поверхностью фильтрационной мембраны, внутри пор фильтрационной мембраны и, возможно, внутри пор подложки. Способ выделения по меньшей мере одного катиона металла и твердых частиц из жидкой среды, в которой они находятся, с применением указанной мембраны на подложке, включает контакт потока жидкой среды с первой противоположной подложке стороной мембраны на подложке. Вторая часть потока жидкой среды, не прошедшая через мембрану на подложке, собирается на первой стороне мембраны и образовывает реагент, обогащенный твердыми частицами. Катион металла иммобилизован на поверхности твердой пористой неорганической фильтрационной мембраны, внутри пор мембраны и, возможно, внутри пор твердой пористой неорганической подложки. Изобретение позволяет с высокой эффективностью осуществить одновременно отделение твердых частиц и катионов металлов, в частности радиоактивных, содержащихся в жидкости. 3 н. и 25 з.п. ф-лы, 8 ил, 3 табл, 4 пр.

Изобретение относится к способам изготовления фильтрующих мембранных материалов. Способ изготовления включает формирование на пористой подложке из нержавеющей стали, имеющей толщину 150-250 мкм и средний размер пор 2-10 мкм, селективного слоя из титана толщиной 1-10 мкм. Формирование селективного слоя осуществляют путем очистки подложки ионами аргона в тлеющем разряде в вакуумной камере с последующим нанесением слоя металлического титана методом магнетронного ионно-плазменного напыления. Нанесение осуществляют при давлении 0,4-0,5 Па, токе разряда 4-4,2 А, напряжении разряда 450-500 В до требуемой толщины слоя титана. Техническим результатом является повышение максимально допустимой температуры эксплуатации полученного материала по сравнению с двухслойными материалами на органической подложке. 5 пр.

Наверх