Патенты принадлежащие Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (RU)

Изобретение относится к технологии формирования токопроводящего слоя на диэлектрической поверхности в отверстиях печатных плат и может быть использовано для изготовления многослойных печатных плат в электронной промышленности.

Изобретение относится к химии гетероциклических соединений, а именно к сложным эфирам 3,4-диалкокси-2,5-тиофендикарбоновой кислоты (формула I и II). Способ получения сложных эфиров 3,4-диалкокси-2,5-тиофендикарбоновой кислоты (формула I и II) заключается во взаимодействии диэтилового эфира 3,4-дигидрокси-2,5-тиофендикарбоновой кислоты с диалкилкарбонатами в присутствии бромидов или хлоридов четвертичных аммонийных оснований в автоклаве, изготовленном из титана, при перемешивании при 150-180°С в течение 10-48 часов.

Изобретение относится к промышленности строительных материалов и может быть использовано при производстве строительных растворов и бетонов, используемых при производстве стеновых блоков, штукатурных основ, облицовочных и декоративных изделий.
Изобретение относится к пассивации поверхности защитных металлических покрытий и может быть использовано для увеличения коррозионной стойкости оцинкованной стали в автомобильной, судостроительной, сельскохозяйственной, нефтехимической и других отраслях промышленности.

Изобретение относится к области органической химии, а именно к способу получения алкил 2-[([1,1'-бифенил]-4-карбонил)амино]-3-(1Н-азол-1-ил) пропаноатов общей формулы I ,где R означает имидазольный или триазольный гетероциклический фрагмент, R1 означает алкильные группы нормального или разветвленного строения с числом атомов углерода от 1 до 4.
Изобретение, относится к области получения кристаллического порошка хромоникелевой шпинели NiCr2O4, которые могут быть использованы для создания терморегулирующих покрытий с высокой излучательной способностью для использования в машиностроении, космической технике, ядерной энергетике и других высокотехнологических отраслях промышленности.

Изобретение относится к области медицины. Предложен способ сокультивирования iPS-EC клеток, перицитов и астроцитов для формирования клеточной модели гематоэнцефалического барьера (ГЭБ).

Изобретение относится к области химической технологии, а именно к получению лакокрасочных покрытий. Антикоррозионная системы лакокрасочных покрытий состоит из грунтовочного цинксодержащего слоя, наносимого методом катодного электроосаждения, и наносимого методом пневматического распыления верхнего эмалевого слоя, способного к самовосстановлению, на основе полиуретановых пленкообразователей.

Изобретение относится к области космического материаловедения, а именно к составам для изготовления покрытий пассивной терморегуляции класса «истинный поглотитель» («ИП»). Эмалевая композиция для изготовления терморегулирующего покрытия содержит в качестве связующего амидосодержащую акриловую смолу, в качестве растворителя смесь ксилола и бутилового спирта, в качестве наполнителя черный термостойкий пигмент, карбонильный никель, дополнительно частицы оксида цинка размером 6,1±1,1 мкм с диаметром стержня в «цветке» 560±180 нм или частицы оксида цинка с диаметром стержня 210±90 нм и длиной 2,5±0,6 мкм, при следующем соотношении компонентов, мас.ч.: смола амидосодержащая акриловая 1,00-1,10, черный термостойкий пигмент 1,86-1,90, карбонильный никель 0,30-0,40, частицы оксида цинка 0,01-0,1, смесь ксилола и бутилового спирта до рабочей вязкости.

Изобретение относится к области гальванотехники и может быть использовано для катодного электроосаждения металлополимерных кадмийсодержащих покрытий. Композиция содержит лакокрасочный материал для катодного электроосаждения, состоящий из эмульсии пленкообразователя в виде эпоксиаминного аддукта, модифицированного толуилендиизоцианатом с молекулярной массой 1700-2500 а.е.м., и пигментной пасты черного цвета, уксусную кислоту и ацетат кадмия, при следующем содержании компонентов, мас.

Изобретение относится к области химии и химической технологии, в частности к разработке эпоксидно-перхлорвиниловых композиций, и может быть использовано для получения самовосстанавливающихся лакокрасочных покрытий, применяемых для защиты металлических изделий и конструкций от атмосферной коррозии.

Изобретение относится к способу получения алкилизоцианатов общей формулы I, где R - алкильные группы нормального, разветвленного или циклического строения с числом атомов углерода от 1 до 8. Способ заключается в том, что в насадочной колонне при непрерывной подаче соответствующего O-(2-гидроксиэтил)карбамата и инертного газа-носителя в верхнюю часть колонны осуществляют термолиз при 200-450°C с последующей фракционной конденсацией полученных целевого и побочного продуктов.

Изобретение относится к способу получения N-(2-гидроксиэтил)-O-изопропилкарбамата (формула I), который находит применение в качестве регулятора роста растений, а также повышает их устойчивость к стрессовым факторам.

Изобретение относится к области технологии радионуклидов и может быть использовано как в технологических процессах, использующих молекулярный тритий и тритийсодержащие соединения, так и для глубокой очистки газовых сбросов от трития предприятий атомной отрасли при решении экологических задач.

Изобретение относится к способу получения 1-фенил-3-(4H-1,2,4-триазол-4-ил)мочевины формулы I который осуществляют взаимодействием (4H-1,2,4-триазол-4-ил)амина и 1,3-дифенилмочевины в мольном соотношении от 3:1 до 4:1 при температуре 170-182°C под вакуумом с отгонкой анилина.

Изобретение относится к технике безотходной ядерной технологии. Компактный бетавольтаический источник тока длительного пользования с бета-эмиттером, представляющий собой сборку «сэндвичевой» структуры в виде стопки чередующихся между собой единичных или комплектных микроисточников тока, где каждый из микроисточников тока содержит кремнийсодержащую n+ легированную пластинку с р+ эпитаксиальным слоем, и источник бета-частиц в виде содержащего радиоизотоп никеля-63 металлического электропроводного слоя, контактирующего с одной или с двух сторон с полупроводниковым преобразователем, и систему токосъемных электродов для подключения к нагрузке, при этом в качестве полупроводникового преобразователя энергии бета-частиц в электрическую энергию - матрицу монокристаллического р-кремния, а в качестве источника бета-частиц - соразмерную с пластинкой полупроводника токопроводящую металлическую пластинку, в качестве системы токосъемных электродов - комбинацию системы внутренних встроенных с обеих сторон кремниевой пластинки по всей площади поверх слоя нитрида кремния серебряных линейных электродов.

Изобретение относится к способу модифицирования структуры стекла под действием лазерного пучка для формирования люминесцирующих микрообластей. Фосфатное стекло, содержащее ионы серебра, локально облучают фемтосекундными лазерными импульсами с длиной волны в ближнем инфракрасном диапазоне, с энергией лазерных импульсов в пределах 30-200 нДж, длительностью лазерных импульсов в пределах 300-1200 фс, частотой следования лазерных импульсов в пределах 1-500 кГц.

Изобретение относится к способу получения N-алкил-О-арилкарбаматов общей формулы I, где R означает арильные группы, a R1 - алкильные группы нормального или разветвленного строения с числом атомов углерода от 1 до 4.
Изобретение относится к способам изготовления фильтрующих мембранных материалов. Способ изготовления включает формирование на пористой подложке из нержавеющей стали, имеющей толщину 150-250 мкм и средний размер пор 2-10 мкм, селективного слоя из титана толщиной 1-10 мкм.

Изобретение относится к способу получения N-арил-О-алкилкарбаматов общей формулы I, где R означает арильные группы, а R1 означает алкильные группы нормального или разветвленного строения с числом атомов углерода от 1 до 4.

Устройство относится к области гальванотехники и может быть использовано в электронном и термоэлектрическом приборостроении. Устройство содержит корпус, источник постоянного тока, кожух с закрепленным в нем анодом и электролизную ванну.
Изобретение относится к мембранной технологии, в частности к фильтрующим материалам для ультра- и нанофильтрации. Предложен материал, состоящий из пористой металлической подложки с размером пор 1,2-5,5 мкм, изготовленной из нержавеющей стали, керамического слоя ТiO2 с размером пор 0,2-0,25 мкм и толщиной 10-15 мкм и слоя металлического титана толщиной 0,1-0,6 мкм с размером пор 3-150 нм, напыленного на поверхность керамического слоя.
Наверх