Способ разделения платины (ii, iv), меди (ii) и цинка (ii) в солянокислых растворах

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано для разделения платины, меди и цинка в солянокислых растворах сорбционным методом. Способ включает сорбцию платины (II, IV), меди (II) и цинка (II) и последующую десорбцию этих ионов из растворов. Сорбцию проводят из свежеприготовленных растворов в статических условиях путем выдерживания ионита в растворе в течение 6 ч. При этом происходит переход платины (II, IV), меди (II) и цинка (II) в фазу ионита. Десорбцию меди и цинка проводят 0,5 М раствором HNO3 в течение 6 ч при температуре 18°С, десорбцию платины проводят раствором тиомочевины в течение 6 ч при температуре 18°С. Медь, цинк и платина десорбируют на разных этапах. Техническим результатом, на достижение которого направлено изобретение, является практически полное отделение платины от меди и цинка за один цикл сорбции-десорбции в солянокислых растворах, увеличение степени извлечения ионов металлов, уменьшение трудоемкости процесса разделения. 1 ил., 3 табл., 2 пр.

 

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано для разделения платины, меди и цинка в солянокислых растворах сорбционным методом с использованием отечественного селективного высокоосновного анионита CYBBER АХ400.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ извлечения платиновых металлов [SU №1533751, B01J 49/00, B01J 45/00, опубл. 07.09.90], который включает разложение концентрата платиновых металлов смесью соляной и азотной кислот, упаривание, добавление соляной кислоты и упаривание досуха. Далее растворяют соли в смеси 0,1 М соляной и 0,5 М серной кислот, пропускают через сорбционную колонку с сорбентом ПОЛИОРГС-XIH или XVH, или IVH со скоростью 10-12 см3/мин. Из растворов после сорбции проводят количественное определение никеля, меди, железа. Насыщенный сорбент обрабатывают последовательно 2-3 М раствором аммиака и 2-4 М раствором соляной кислоты, десорбируя платиновые металлы на 50-99%. После десорбции сорбент вновь отправляют на сорбцию.

Недостатком данного способа является большая трудоемкость процессов, малый процент извлечения сопутствующих металлов (в частности, меди и железа) за один цикл сорбции-десорбции (1,07-4,63% Cu, 0,13-6,42% Fe, 0,23-6,42% Ni); за одиннадцатый цикл сорбции-десорбции (1,32-5,02% Cu, 0,2-0,8% Fe, 0,3-15,01% Ni).

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является практически полное отделение платины от меди и цинка за один цикл сорбции-десорбции в солянокислых растворах, увеличение степени извлечения ионов металлов, уменьшение трудоемкости процесса разделения.

Указанный технический результат достигается тем, что в способе разделения платины (II, IV), меди (II) и цинка (II) в солянокислых растворах, включающем сорбцию платины (II, IV), меди (II) и цинка (II) и последующую десорбцию, новым является то, что сорбцию проводят из свежеприготовленных солянокислых растворов в диапазоне концентраций НСl 0,001 2,0 моль/л, меди (II) - 3,125 ммоль/л, цинка (II) - 2,0 ммоль/л, при концентрации платины (II, IV) 0,25 ммоль/л в статических условиях путем насыщения навески ионита раствором в течение 6 ч, десорбцию меди и цинка проводят 0,5 М раствором HNO3 в течение 6 ч при температуре 18°С и концентрациях меди (II) - 3,125 ммоль/л и цинка (II) - 2,0 ммоль/л, десорбцию платины проводят раствором тиомочевины в течение 6 ч при температуре 18°С и исходной концентрации платины (II, IV) 0,25 ммоль/л.

Указанные отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Изобретение поясняется чертежами. На фиг. 1 представлена общая схема разделения платины (II, IV), меди (II) и цинка (II) в солянокислых растворах на высокоосновном анионите CYBBER АХ400.

Сущность заявляемого способа заключается в том, что разделение платины (II, IV) меди (II) и цинка (II) осуществляют в статических условиях. При этом в свежеприготовленных солянокислых растворах преимущественно присутствуют хлорокомплексы платины (II) и платины (IV) ([PtCl4]2- и [PtCl6]2-, медь в этих системах существует в виде комплексов [CuCl2]-, цинк - в [ZnCl4]2-.

На первом этапе навески ионита (0,1 г) в хлоридной форме заливают 10,0 мл солянокислого раствора платины (II, IV), меди (II) и цинка (II). В 2,0 моль/л НСl ионы платины (II, IV), меди (II) и цинка (II) переходят в фазу ионита; в 0,001 моль/л НСl - только ионы платины (II, IV), ионы цинка (II) и меди (II) не сорбируются в слабокислых средах. По истечении 6 ч определяют концентрацию платины (II, IV), меди (II) и цинка (II) при совместном присутствии в равновесных растворах спектрофотометрическим методом.

Второй этап включает десорбцию данных металлов с ионитов. Иониты после десорбции могут быть переведены снова в хлоридную форму и повторно использованы. Платину после разделения можно использовать для дальнейшей работы в виде раствора или можно перевести в металлическую форму путем электролиза.

После сорбционного извлечения платины, меди и цинка в 2,0 моль/л НСl проводят десорбцию меди и цинка. Навески ионитов, насыщенные медью и цинком, массой 0,1 г заливают предварительно 0,5 М раствором HNO3 и оставляют на 6 ч при температуре 18°С. Далее отделяют раствор от ионита фильтрованием и анализируют растворы на ионы меди (II) и цинка (II) спектрофотометрическим методом с рубеановодородной кислотой и ПАНом соответственно [Аналитическая химия меди / В.Н. Подчайнова, Л.Н. Симонова. - М.: Наука, 1990. - 279 с.; Аналитическая химия цинка / В.П. Живописцев, В.А. Селезнева. - М.: Наука, 1975. - 292 с.].

Данные по сорбции в трехкомпонентной системе, включающей платину, медь и цинк, показывают, что наблюдается явление синергизма - взаимного влияния компонентов друг на друга при сорбции. Это приводит к тому, что ионит поглощает платину в большем количестве, а ионы цветных металлов извлекаются на невысоком уровне (табл. 1). Кроме того, сильноосновные аниониты обладают повышенным сродством к платине ввиду того, что хлоридные комплексы платины (II, IV) являются более устойчивыми относительно комплексов меди (II) и цинка (II) [Ионный обмен / Под. ред. Я. Марийского. – М.: Мир, 1968. - 565 с.].

Далее проводят десорбцию платины. Навески ионитов, насыщенные платиной, массой 0,1 г заливают раствором тиомочевины (80 г/л в 0,3 М серной кислоте) объемом 10,0 мл и оставляют на 6 ч для установления равновесия. Платина (II, IV) переходит в раствор. Далее отделяют раствор от ионита фильтрованием. Растворы на содержание платины анализируют спектрофотометрическим методом с хлоридом олова (II) [Аналитическая химия платиновых металлов / С.И. Гинзбург, Н.А. Езерская, И.В. Прокофьева и др. - М.: Наука, 1972. - 617 с.].

Результаты по десорбции ионов платины (II, IV), меди (II) и цинка (II) представлены в таблицах 2 и 3 соответственно, где С0 - исходная концентрация элемента/среды при сорбции (ммоль/л / моль/л), Т - температура (°С), t - время десорбции (ч).

Способ иллюстрируется следующими примерами.

Пример 1

Навеску анионита CYBBER АХ400 в хлоридной форме массой 0,1 г заливают 10 мл свежеприготовленного солянокислого раствора следующего состава: концентрация НСl 2,0 моль/л, концентрация по платине (II, IV) 0,25 ммоль/л, по меди (II) 3,125 ммоль/л, по цинку(II) 2,0 ммоль/л. Оставляют на 6 ч, при этом платина, медь и цинк полностью сорбируются на анионите. После этого отделяют раствор от анионита фильтрованием и промывают анионит водой. Далее заливают навеску анионита, насыщенную платиной, медью и цинком, 0,5 М раствором HNO3 и оставляют на 6 ч при температуре 18°С. Далее отделяют раствор от ионита фильтрованием и анализируют растворы на ионы меди (II) и цинка (II) спектрофотометрическим методом с рубеановодородной кислотой и ПАНом соответственно. Медь (II) и цинк (II) полностью десорбировались (табл. 3). Далее анионит промывают водой и заливают раствором тиомочевины 80 г/л в 0,3 М серной кислоте объемом 10,0 мл и оставляют на 6 ч для установления равновесия. Платина (II, IV) переходит в раствор, после чего раствор отделяют от ионита фильтрованием (табл. 2).Растворы на содержание платины анализируют спектрофотометрическим методом с хлоридом олова (II).

Пример 2

Навеску анионита CYBBER АХ400 в хлоридной форме, массой 0,1 г заливают 10 мл свежеприготовленного солянокислого раствора следующего состава: концентрация НСl 0,01 моль/л, концентрация по платине (II, IV) 0,25 ммоль/л, по меди (II) 3,125 ммоль/л, по цинку (II) 2,0 ммоль/л. Оставляют на 6 ч, при этом платина полностью сорбируется на анионите. Медь и цинк не сорбируются в данных условиях и остаются в растворе. После этого отделяют раствор от анионита фильтрованием и промывают анионит водой. Анализируют растворы на ионы меди (II) и цинка (II) спектрофотометрическим методом с рубеановодородной кислотой и ПАНом соответственно. Далее анионит заливают раствором тиомочевины 80 г/л в 0,3 М серной кислоте объемом 10,0 мл и оставляют на 6 ч для установления равновесия. Платина (II, IV) переходит в раствор, после чего раствор отделяют от ионита фильтрованием (табл. 2). Растворы на содержание платины анализируют спектрофотометрическим методом с хлоридом олова (II).

Использование заявляемого изобретения позволяет разделить платину (II, IV), медь (II) и цинк (II) в солянокислых растворах в диапазоне концентраций по НСl от 0,001 до 2,0 М, меди (II) - 3,125 ммоль/л, цинка (II) - 2,0 ммоль/л при концентрации платины (II, IV) 0,25 ммоль/л. Для процессов сорбции и десорбции применяются растворы тиомочевины и азотной кислоты, что позволяет легко регенерировать иониты. Способ позволяет извлекать указанные металлы из свежеприготовленных солянокислых растворов как в случае сорбции, так и в случае десорбции. Таким образом, появляется возможность отделения платины (II, IV) от меди (II) и цинка (II), увеличивается степень извлечения ионов металлов, уменьшается трудоемкость процесса разделения.

Способ разделения платины (II, IV), меди (II) и цинка (II) в солянокислых растворах, включающий сорбцию платины (II, IV), меди (II) и цинка (II) и последующую десорбцию, при этом сорбцию проводят из свежеприготовленных солянокислых растворов с концентрацией HCl 2,0 моль/л, меди (II) - 3,125 ммоль/л, цинка (II) 2,0 ммоль/л при концентрации платины (II, IV) 0,25 ммоль/л в статических условиях путем насыщения навески ионита раствором в течение 6 ч, десорбцию меди и цинка проводят 0,5 М раствором HNO3 в течение 6 ч при температуре 18°C и концентрациях меди (II) 3,125 ммоль/л и цинка (II) 2,0 ммоль/л, десорбцию платины проводят раствором тиомочевины в течение 6 ч при температуре 18°C и исходной концентрации платины (II, IV) 0,25 ммоль/л.



 

Похожие патенты:

Способ извлечения рения из водных растворов относится к области аналитической химии, химической технологии, в частности к способам применения полимерных материалов для извлечения из водных растворов перренат-ионов, в том числе для их последующего определения.

Изобретение относится к переработке сульфидных золотосодержащих флотоконцентратов биовыщелачиванием золотосодержащих флотоконцентратов. Процесс биовыщелачивания золотосодержащих флотоконцентратов проводят одновременно с процессом сорбции сурьмы из биопульпы, сорбцию сурьмы проводят анионообменной смолой Lewatit MonoPlus марки МР-64, заряженной в сульфатную форму 5% раствором серной кислоты, при расходе смолы не более 5% от объема биопульпы в реакторе и продолжительности процесса сорбции не менее 24 часов, подачу смолы осуществляют по принципу противотока.

Изобретение относится к технологии извлечения индия из сульфатных цинковых растворов с повышенным содержанием кремнезема. Способ селективного извлечения индия из сульфатных цинковых растворов включает стадию сорбции индия на минеральном алюмосиликатном ионите - монтмориллоните, модифицированном ди(2-этил-гексил)фосфорной кислотой (Д2ЭГФК), и последующую стадию десорбции индия раствором соляной кислоты.

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов (РЗЭ) при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов РЗЭ.
Способ переработки растворов после карбонатной переработки вольфрамовых руд включает вскрытие вольфрамового концентрата автоклавным содовым выщелачиванием вольфрама из вольфрамового концентрата, регенерацию вскрывающего реагента и возвращение его на стадию выщелачивания, концентрирование вольфрама с помощью ионного обмена на твердом анионите, десорбцию с получением десорбата десорбата и регенерацию анионита.
Изобретение относится к способу переработки фторсодержащих концентратов редкоземельных элементов (РЗЭ) и может быть использовано в гидрометаллургии. Иттрофлюоритовый концентрат, содержащий в мас.
Изобретение относится к области металлургии цветных металлов, в частности к извлечению скандия из красных шламов - отходов глиноземного производства. Способ включает выщелачивание красного шлама карбонатными растворами при одновременной газации шламовой пульпы газовоздушной смесью, содержащей СO2.

Изобретение относится к сорбционной гидрометаллургии урана и рения и может быть использовано для селективного извлечения рения из растворов. Способ извлечения рения из урансодержащих растворов включает сорбцию рения слабоосновным наноструктурированным ионитом на стиролакрилатной матрице, содержащим функциональные группы циклогексиламина в количестве 1,9-3,0 мг-экв/г.

Изобретение относится к гидрометаллургии и может быть использовано для извлечения урана из сложносолевых растворов и пульп. Способ сорбционного извлечения урана из сернокислых растворов и пульп заключается в том, что сорбцию урана проводят на анионите смешанной основности.

Изобретение относится к извлечению ценного металла из материала. При этом применяется нанофильтрация, при которой ценный металл извлекают из руды или отходов посредством выщелачивания с помощью подходящего выщелачивающего средства.

Изобретение относится к извлечению благородных металлов из упорных сульфидных руд и может быть использовано для управления процессом биовыщелачивания, проводимого в чановых реакторах, имеющих перемешивающее устройство, систему терморегуляции и аэрации.

Изобретение относится к переработке сульфидных золотосодержащих флотоконцентратов биовыщелачиванием золотосодержащих флотоконцентратов. Процесс биовыщелачивания золотосодержащих флотоконцентратов проводят одновременно с процессом сорбции сурьмы из биопульпы, сорбцию сурьмы проводят анионообменной смолой Lewatit MonoPlus марки МР-64, заряженной в сульфатную форму 5% раствором серной кислоты, при расходе смолы не более 5% от объема биопульпы в реакторе и продолжительности процесса сорбции не менее 24 часов, подачу смолы осуществляют по принципу противотока.

Способ может быть использован в гидрометаллургии для переработки золотосодержащих концентратов двойной упорности, т.е. сырья, содержащего тонкодиспергированное в сульфидах золото и органическое углистое вещество.
Изобретение относится к гидрометаллургический переработке минерального сырья, содержащего цветные, благородные, редкие металлы, и предназначено для их извлечения из упорных углистых руд и техногенных минеральных образований.

Изобретение относится к извлечению золота из бурых и каменных углей. Способ включает дробление углей до 6-10 мм, загрузку их на решетку в металлическую герметичную емкость с патрубком, без соприкосновения с находящейся в ней водой, подогрев емкости до 135-140°C и выдержку до полного испарения воды, при этом обеспечивают прохождение нагретого водяного пара через слой углей и через патрубок с его конденсацией в сборной охлаждаемой емкости с суспензией сорбента, собирающего золото в летучей форме, перенесенное из углей.

Изобретение относится к переработке золотосодержащей руды с примесями ртути. Измельченный исходный материал нагревают до температуры плавления золота, в емкость с нагретой до 92-98°C водой выливают расплавленный материал и после осаждения золота на дне емкости в виде твердой фракции, а ртути - на слое золота в виде жидкой фракции, отделяют ртуть от золота удалением жидкой ртути выливанием из упомянутой емкости в отдельную емкость.
Изобретение относится к получению бесшовного изделия из химически высокочистого иридия с чистотой не ниже 99,99 мас.%, имеющего изотропную структуру с размером зерен 100-300 нм.

Изобретение относится к области радиохимической технологии и может быть использовано в технологии переработки отработавшего ядерного топлива (ОЯТ). Способ извлечения металлов платиновой группы из осадков после осветления продукта кислотного растворения волоксидированного отработавшего ядерного топлива включает окислительную трансформацию осадка, восстановительную обработку.

Изобретение относится к гидрометаллургии серебра и может быть использовано при извлечении из хлоридных растворов при переработке растворов выщелачивания сульфидных цинковых и медных руд, концентратов, а также других промпродуктов цветной металлургии.

Изобретение относится к способу обработки золы, в частности летучей золы, в котором несколько элементов отделяют от золы. В способе отделяют благородные металлы и редкоземельные элементы.

Изобретение относится к получению гидрозоля серебра. Способ включает приготовление водного раствора восстановителя в водном растворе стабилизатора и введение к раствору восстановителя соли металла. В качестве восстановителя используют кверцетин с концентрацией от 1⋅10-3 до 14⋅10-3 моль/литр в его депротонированной форме при мольном соотношении кверцетина с аммиаком в интервале 1:3-1:10, при этом окисленная форма кверцетина выступает стабилизатором наночастиц. Концентрацию дополнительного стабилизатора вещества варьируют от 1⋅10-3 до 5 моль/литр, в качестве соли металла используют нитрат серебра. Концентрация наночастиц серебра в полученном растворе составляет от 500 ppm до 2500 ppm. Обеспечивается снижение расхода стабилизатора, при этом не используются токсичные и агрессивные химические вещества. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано для разделения платины, меди и цинка в солянокислых растворах сорбционным методом. Способ включает сорбцию платины, меди и цинка и последующую десорбцию этих ионов из растворов. Сорбцию проводят из свежеприготовленных растворов в статических условиях путем выдерживания ионита в растворе в течение 6 ч. При этом происходит переход платины, меди и цинка в фазу ионита. Десорбцию меди и цинка проводят 0,5 М раствором HNO3 в течение 6 ч при температуре 18°С, десорбцию платины проводят раствором тиомочевины в течение 6 ч при температуре 18°С. Медь, цинк и платина десорбируют на разных этапах. Техническим результатом, на достижение которого направлено изобретение, является практически полное отделение платины от меди и цинка за один цикл сорбции-десорбции в солянокислых растворах, увеличение степени извлечения ионов металлов, уменьшение трудоемкости процесса разделения. 1 ил., 3 табл., 2 пр.

Наверх