Композиция для получения теплоизоляционных изделий



Композиция для получения теплоизоляционных изделий
Композиция для получения теплоизоляционных изделий
Композиция для получения теплоизоляционных изделий
Композиция для получения теплоизоляционных изделий

Владельцы патента RU 2641933:

федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") (RU)

Изобретение относится к области теплотехники, в частности к производству легковесных огнеупорных теплоизоляционных изделий. Композиция включает связующее и легкий заполнитель и дополнительно содержит карбамидофурановую смолу марки ФК и катализатор отверждения марки ОК в количестве 10% от массы смолы. При этом в качестве связующего выбрано алюмохромфосфатное связующее, а в качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм при следующем соотношении компонентов, маc.%: алюмохромфосфатное связующее 25-34, полые алюмосиликатные микросферы 55-69,5, катализатор отверждения марки ОК 0,5-1, карбамидофурановая смола марки ФК 5-10. Техническим результатом является повышение механических свойств огнеупорных легковесных теплоизоляционных изделий и снижение тепловых потерь с теплоизолируемой поверхности. 3 табл., 12 пр.

 

Изобретение относится к области теплотехники, в частности к производству легковесных огнеупорных теплоизоляционных изделий, и может быть использовано для обеспечения тепловой защиты передового энергетического оборудования.

Известна композиция для получения теплоизоляционного материала (патент RU №2584538 опубл. 20.05.2016, МПК C08L61/10), содержащая фенольное связующее на основе фенолформальдегидных смол, минеральный наполнитель - золошлаковый отход, катализатор - вспенивающе-отверждающий агент кислотного типа ВАГ-3.

Недостатком данного технического решения является низкая механическая прочность и низкая температура эксплуатации изделий, полученных на основе настоящей композиции.

Наиболее близкой по технической сущности к предлагаемому изобретению является сырьевая смесь для изготовления теплоизоляционных изделий (авторское свидетельство SU №753824, опубл. 07.08.1980, МПК С04В 29/02), содержащая фосфатное связующее, глиноземсодержащий компонент и легкий заполнитель в виде фосфатных микросфер.

Недостатком настоящего технического решения является низкая механическая прочность изделий, полученных на основе данной смеси.

Техническая задача предлагаемого изобретения состоит в разработке композиции, обеспечивающей повышение прочности и снижение теплопроводности теплоизоляционных легковесных изделий, изготовленных на ее основе.

Технический результат заключается в повышении механических свойств огнеупорных легковесных теплоизоляционных изделий и снижении тепловых потерь с теплоизолируемой поверхности.

Это достигается тем, что известная композиция для получения теплоизоляционных изделий, включающая связующее и легкий заполнитель, дополнительно содержит карбамидофурановую смолу марок ФК и катализатор отверждения марок ОК в количестве 10% от массы смолы, при этом в качестве связующего выбрано алюмохромфосфатное связующее, а в качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм при следующем соотношении компонентов маc, %: алюмохромфосфатное связующее 25-34, полые алюмосиликатные микросферы 55-69,5, катализатор отверждения марок ОК 0,5-1, карбамидофурановая смола марок ФК 5-10.

Алюмохромфосфатное связующее представляет собой водный раствор ортофосфорной кислоты и оксидов хрома и алюминия согласно ТУ 6-18-166-83. В качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм. Также возможно использование других видов полых микросфер из следующих групп: полые керамические микросферы, полые зольные микросферы диаметром от 150 до 280 мкм.

Карбамидофурановая смола является продуктом поликонденсации карбамида, формальдегида и фурилового спирта в водной среде. Опытным путем было установлено, что при изготовлении композиции для получения теплоизоляционных изделий может быть использована любая карбамидофурановая смола марок ФК, которые отличаются между собой лишь содержанием азота и свободного формальдегида в своем составе, что никак не влияет на конечные характеристики композиции. В качестве катализатора отверждения данной смолы выбраны катализаторы марок ОК, отличающиеся только скоростью реакции отверждения, что также не влияет на свойства получаемого изделия.

Композиция для получения теплоизоляционных изделий работает следующим образом.

Алюмохромфосфатное связующее в составе композиции создает матрицу теплоизоляционного изделия, удерживающую в своей структуре полые алюмосиликатные микросферы (или полые керамические микросферы или полые зольные микросферы). В отличие от жаростойкого цемента или каолиновой глины, алюмохромфосфатное связующее имеет высокое объемное заполнение, а также низкую плотность. Это обеспечивает повышение теплоизолирующих и механических свойств теплоизоляционного изделия.

Поскольку алюмохромфосфатное связующее также имеет в своем составе ортофосфорную кислоту, расход катализатора отверждения используется 10% от массы смолы. Таким образом, при отверждении композиции часть ортофосфорной кислоты, входящей в состав алюмохромфосфатного связующего, идет на каталитическую реакцию отверждения смолы, что приводит к постепенной полимеризации композиции. Карбамидофурановая смола совместно с катализатором отверждения придает теплоизоляционному изделию, полученному на основе предлагаемой композиции, повышенную стойкость к тепловым ударам и низкую скорость термодеструкции.

Опытным путем было доказано, что при использовании легкого заполнителя в виде полых алюмосиликатных микросфер (или полых керамических микросфер или полых зольных микросфер) размером от 150 до 280 мкм, изделие, полученное на основе заявленной композиции, не разрушается и выдерживает термические нагрузки до 700°С. В случае использования микросферы размером менее 150 мкм, в изготавливаемом материале наблюдается более плотная упаковка микросфер, что при повышенных температурах термического отверждения может приводить к возникновению точек напряжения в структуре материала, вследствие чего возможно локальное разрушение материала.

Данную композицию готовят следующим образом. Замешивают алюмосиликатные микросферы в количестве 60% от их общей массы, алюмохромфосфатное связующее и катализатор отверждения. Затем отдельно замешивают оставшиеся 40% алюмосиликатных микросфер и карбамидофурановую смолу. Далее проводят гомогенизацию двух смесей. Затем проводят виброусадку полученной формовочной смеси, после чего осуществляют прессование смеси с вибрацией в течение 5-7 секунд при давлении прессования 15 атм, что обеспечивает лучшую плотность упаковки микросфер в изделии. После этого заготовку помещают в сушильный шкаф для каталитической полимеризации карбамидофурановой смолы на 1 час при температуре 60°С. Далее заготовку помещают в камерную печь, изолированную от доступа воздуха, для проведения отверждения в бескислородной среде со ступенчатым нагревом: 200°С в течение 1 часа, далее 700°С в течение 5 часов. По окончании процесса термоотверждения печь выключают и оставляют в ней изделие для плавного охлаждения в течение 10 часов.

В таблице 1 «Использование различных марок карбамидофурановой смолы с различными марками катализаторов отверждения при осуществлении предлагаемой композиции» приведены 12 примеров на основе экспериментально полученных данных, подтверждающих возможность осуществления предлагаемого изобретения с достижением указанного технического результата. В таблице 2 «Состав изделий, полученных на основе предложенной композиции» приведены составы изделий для указанных в таблице 1 примеров, полученных на основе предложенной композиции с разными марками карбамидофурановых смол и катализаторов отверждения. В таблице 3 «Теплоизоляционные характеристики полученного теплоизоляционного изделия на основе предлагаемой композиции» представлены определенные экспериментально коэффициент теплопроводности, прочность и плотность изделий для указанных в таблицах 1 и 2 примеров.

Изделия, полученные на основе предложенной композиции, обладают теплопроводностью не более 0,09 Вт/м*К, прочностью на сжатие - не менее 0,5 МПа и плотностью не менее 0,15 г/см3. Использование композиции позволяет повысить механические свойства огнеупорных легковесных теплоизоляционных изделий и снизить тепловые потери с теплоизолируемой поверхности энергетического оборудования.

Композиция для получения теплоизоляционных изделий, включающая связующее и легкий заполнитель, отличающаяся тем, что дополнительно содержит карбамидофурановую смолу марки ФК и катализатор отверждения марки ОК в количестве 10% от массы смолы, при этом в качестве связующего выбрано алюмохромфосфатное связующее, а в качестве легкого заполнителя выбраны полые алюмосиликатные микросферы с размером частиц от 150 до 280 мкм при следующем соотношении компонентов, мас.%:

алюмохромфосфатное связующее 25-34
полые алюмосиликатные микросферы 55-69,5
катализатор отверждения марки ОК 0,5-1
карбамидофурановая смола марки ФК 5-10



 

Похожие патенты:
Изобретение относится к использованию углеродного соединения Михаэля для уменьшения теплопередачи. Описан способ использования углеродного соединения Михаэля для уменьшения теплопередачи, включающий: локализацию углеродного соединения Михаэля между теплопередатчиком и теплоприемником, где углеродное соединение Михаэля представляет собой продукт реакции многофункционального акрилатного соединения с многофункциональным донором Михаэля; и теплопередатчик имеет температуру от 100 до 290°С.

Изобретение относится к пищевой промышленности, а именно, к способам производства замороженных овощных полуфабрикатов, состоящих из мелкого и среднего размеров плодов в целом и нарезанном на куски виде, разделенном на порции.
Изобретение относится к области теплопроводящих диэлектрических материалов и может найти применение при изготовлении теплоотводящих прокладок, лент, герметиков, заливочных компаундов для чипов компьютерной памяти, изделий силовой электронике, портативных устройств, блоков электропитания и силовых преобразователей, в которых необходимо обеспечить теплоотвод от теплонагруженных элементов и узлов.

Предложен антифриз энергосберегающий для двигателей внутреннего сгорания автомобилей, тяжелой колесной и гусеничной техники гражданского и военного назначения и других транспортных средств, а также генераторных установок, который обладает низкой вязкостью и повышенной теплопередающей способностью.
Изобретение относится к области защиты металлов от коррозии и может быть использовано в узлах систем охлаждения, которые подвергаются испытанию нагреванием, или в двигателях для предварительной обкатки перед сдачей на склад и/или сборкой транспортного средства или двигателя.
Изобретение относится к области химической технологии, в частности к низкозамерзающим охлаждающим жидкостям, и может быть использовано в качестве теплоносителя в системах охлаждения двигателей внутреннего сгорания, а также в оборудовании бытового и промышленного назначения.

Изобретение относится к области химии и может быть использовано для создания теплоносителей. Предложен теплоноситель на основе кремнийорганических соединений.
Изобретение относится к холодильной технике, в частности к промежуточным хладоносителям, и может найти применение в пищевой и других отраслях промышленности. .
Изобретение относится к холодильной технике и может быть использовано как рабочее тело для абсорбционных холодильных машин и абсорбционных термотрансформаторов либо как абсорбент в системах осушки кондиционирования воздуха.

Изобретение относится к индустрии охлаждения и кондиционирования воздуха. .

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал на основе этиленпропилендиенового каучука включает следующее соотношение компонентов, мас.

Изобретение относится к стеклопластикам, фенолформальдегидным связующим и композиционным материалам на их основе, предназначенным для изготовления пожаробезопасных изделий.

Изобретение относится к способу получения пористого теплоизолирующего заполнителя для теплоизолирующих многослойных панелей и оболочек. Изобретение может быть использовано в авиа- и судостроении, а также в химическом машиностроении.
Изобретение относится к способу обработки мелкодисперсных порошковых наполнителей композиционных материалов и может быть использовано при производстве композиционных материалов фрикционного назначения.
Изобретение относится к способу обработки волокнистых армирующих наполнителей композиционных материалов и может быть использовано при производстве композиционных материалов фрикционного назначения.

Изобретение относится к полимерным составам на основе фенолформальдегидной смолы, бутадиен-нитрильного каучука в бутилацетате, порошкообразных и волокнистых наполнителей для изготовления полуфабриката прессовочного материала общепромышленного назначения.

Изобретение относится к полимерным композиционным материалам, которые могут быть использованы для изготовления изделий конструкционного назначения в авиационной, автомобильной, бытовой и других областях техники.

Изобретение относится к полимерным композициям для получения теплоизоляционного материала, который может быть использован при создании наружных теплоизоляционных и защитных покрытий при возведении и реконструкции зданий и сооружений, теплоизоляции жилых и производственных зданий, магистральных и локальных нефте- и газопроводов и иных энергонеэффктивных конструкций.

Изобретение относится к композиции для получения радиозащитного фенолформальдегидного пенопласта заливочного типа на основе резольных фенолформальдегидных смол холодного отверждения и может быть использовано в тех областях техники, где требуются облегченные негорючие теплоизоляционные радиозащитные материалы, устойчивые к длительным воздействиям высоких температур и агрессивных газовых сред, например авиация, космонавтика, судостроение, машиностроение, транспорт, гражданское и промышленное строительство.
Изобретение относится к области получения органических гелей и органических пен на их основе и может быть использовано при создании мишеней для диагностики плазмы, в производстве катализаторов, сорбентов и носителей.

Изобретение относится к продукту конденсации на основе мономеров. Продукт конденсации на основе мономеров, при этом мономеры включают: I) по меньшей мере один мономер, имеющий альдегидный фрагмент, и II) по меньшей мере один мономер, имеющий кетонный фрагмент, который несет по меньшей мере один неароматический фрагмент, и при этом продукт конденсации содержит по меньшей мере один фрагмент из ряда групп фосфоно, сульфино, сульфо, сульфамидо, сульфокси, сульфоалкилокси, сульфиноалкилокси и фосфоноокси и/или их солей, продукт отличается тем, что мономеры дополнительно содержат III) галлиевую кислоту.
Наверх