Фотопреобразователь лазерного излучения

Изобретение относится к полупроводниковой электронике. Фотопреобразователь лазерного излучения включает подложку (1) из n-GaAs, на которую последовательно нанесены слой (2) тыльного барьера из n-AlGaAs, базовый слой (3) из n-GaAs, эмиттерный слой (4) из p-GaAs, слой (5) широкозонного окна из n-AlxGa1-xAs, широкозонный стоп-слой (6) из n-AlyGa1-yAs и контактный подслой (7) из p-GaAs. Толщина слоя (5) широкозонного окна из n-AlxGa1-xAs, где 0,15<x<0,25, составляет не менее 1 мкм, а в широкозонном стоп-слое (6) из n-AlyGa1-yAs концентрация у алюминия составляет 0,6<y<0,7. Фотодетектор согласно изобретению обладает высоким уровнем квантовой эффективности в диапазоне 800-860 нм, а также пониженным последовательным сопротивлением. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотопреобразователей (ФП) лазерного излучения.

Как показывают теоретические данные, эффективность преобразования монохроматического (в частности, лазерного) излучения в диапазоне длин волн 0,8-86 мкм для фотопреобразователей на основе GaAs может достигать 85-87% при мощности падающего излучения 100 Вт/см2. Таким образом, задача улучшения характеристик ФП лазерного излучения, таких как квантовый выход и КПД, является весьма актуальной для современной электроники и фотоники.

Известен фотопреобразователь лазерного излучения на основе GaAs (см. Tiqiang Shan, Xinglin Qi, Design and optimization of GaAs photovoltaic converter for laser power beaming, 2015, м. 71, p. 144-150), включающий подложку из n-GaAs толщиной 350 мкм (концентрация электронов Nn=5⋅1018 см-3), буферный слой из n-GaAs толщиной 1 мкм (Nn=5⋅1018 см-3), слой тыльного потенциального барьера из n-AlGaAs толщиной 0,05 мкм (Nn=5⋅1018 см-3), базовый слой из n-GaAs толщиной 3,5 мкм (Nn=1⋅1017 см-3), эмиттерный слой из p-GaAs толщиной 0,5 мкм (концентрация дырок Np=2⋅1018 см-3), слой широкозонного окна из p-GaInP толщиной 0,05 мкм (Np=5⋅1018 см-3), контактный слой из p+-GaAs толщиной 0,5 мкм (Np=5⋅1019 см-3), который впоследствии вытравливают на фоточувствительной области ФП, тыльный и лицевой омические контакты, двухслойное антиотражающее покрытие из TiO2/SiO2 для спектрального диапазона 810-840 нм. Эффективность таких элементов составила 53,2% при мощности падающего излучения 5 Вт/см2 для длины волны 808 нм.

Недостатком известного фотопреобразователя является высокое последовательное сопротивление растекания, связанное с малой толщиной слоя широкозонного окна, что обеспечивает его работоспособность только до мощности 5 Вт/см2.

Известен фотопреобразователь лазерного излучения на основе GaAs (см. E. Oliva, F. Dimroth and A.W. Bett. Converters for High Power Densities of Laser Illumination. - Prog. Photovolt: Res. Appl., 2008, 16:289-295), содержащий подложку из n-GaAs, слой тыльного потенциального барьера из n+-GaInP (Nn=8⋅1018 см-3), базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из p+-GaInP и контактный слой из p+-Al0,5GaAs (Np=1,5⋅1019 см-3) или из p++-Al0,5GaInAs (Np=1⋅1020 см-3), который впоследствии вытравливают на фоточувствительной области ФП, тыльный контакт из Pd/Ge к n-GaAs, лицевой контакт из слоев Ti/Pd/Ag и антиотражающее покрытие из двух слоев: TaOx и MgF2. Эффективность таких фотопреобразователей варьируется от 52% до 54,9% при интенсивности падающего излучения 10-20 Вт/см2 для длины волны 810 нм.

К недостатку известного фотопреобразователя относится усложненная технология его изготовления (использование большого количества разных газов для выращивания слоев разного элементного состава, а следовательно, повышенные требования к очистке реактора от нежелательных примесей). Кроме того, в случае использования широкозонного контактного слоя p+-Al0,5GaAs может увеличиваться последовательное сопротивление структуры из-за большого переходного сопротивления металл-полупроводник.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является фотопреобразователь лазерного излучения (см. патент RU 2547004, МПК H01L 31/18, опубл. 10.04.2015), принятый за прототип и включающий подложку из n-GaAs, легированную оловом, буферный слой из n-GaAs толщиной не менее 10 мкм, легированный оловом или теллуром, базовый слой из n-GaAs толщиной 3-5 мкм, легированный оловом или теллуром, эмиттерный слой из p-GaAs толщиной 1,5-2,0 мкм, легированный магнием, слой из p-AlxGa1-xAs толщиной 3-30 мкм, легированный магнием или германием, при x=0,3-0,4 в начале роста слоя и при x=0,10-0,15 в приповерхностной области слоя, тыльный омический контакт из Au(Ge)/Au, лицевой омический контакт из Cr/Au и двухслойное антиотражающее покрытие (ZnS/MgF2).

Недостатками известного фотодетектора лазерного излучения является неполное собирание фотогенерированных носителей из базового слоя и высокое последовательное сопротивление, связанное с необходимостью нанесения верхнего металлического контакта непосредственно на слой широкозонного окна, содержащего алюминий.

Задачей настоящего решения является создание такого фотодетектора лазерного излучения, который обладал бы высоким уровнем квантовой эффективности в диапазоне 800-860 нм, а также пониженным последовательным сопротивлением, что обеспечит повышение его КПД, а также возможность увеличения преобразуемой мощности лазерного излучения.

Поставленная задача достигается тем, что фотодетектор лазерного излучения включает полупроводниковую подложку из n-GaAs, на которую последовательно нанесены слой тыльного барьера из n-AlGaAs, базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из p-AlxGa1-xAs толщиной не менее 1 мкм, где 0,15<х<0,25, широкозонный стоп-слой из p-AlyGa1-yAs, где 0,6<y<0,7, и контактный подслой из p-GaAs.

Новым в настоящем фотопреобразователе является введение в структуру слоя тыльного потенциального барьера из n-AlxGa1-xAs, а также введение широкозонного стоп-слоя из p-AlyGa1-yAs, где 0,6<y<0,7, для травления контактного подслоя. Наличие тыльного барьера позволяет обеспечить полное собирание носителей, генерируемых в базовом слое. Наличие широкозонного стоп-слоя из p-AlyGa1-yAs, где 0,6<у<0,7, позволяет выполнить слой широкозонного окна из AlGaAs с малым содержанием алюминия, характеризующегося большей подвижностью носителей заряда и большей удельной проводимостью, что снижает сопротивление растекания фотодетектора. Кроме того, наличие широкозонного стоп-слоя из p-AlyGa1-yAs, позволяет использовать контактный подслой из GaAs, который обладаем очень малым переходным сопротивлением с металлическими контактами, что также понижает последовательное сопротивление структуры. Это условие не выполняется в фотодетекторе-прототипе, где отсутствие селективности для травления контактного подслоя приводит к необходимости осаждать металлический контакт непосредственно на слой широкозонного окна, обладающего большим переходным сопротивлением с металлическим контактом.

Концентрация алюминия в слое широкозонного окна 0,15<x<0,25 обусловлена тем, что при меньшей концентрации возможен заброс фотогенерированных носителей заряда в слой широкозонного окна, где они могут рекомбинировать, не давая вклад в фототок. При концентрации алюминия более 0,25 уменьшение подвижности носителей заряда будет приводить к заметному росту его удельного сопротивления. Толщина слоя широкозонного окна обусловлена тем, что при толщине слоя менее 1 мкм его сопротивление будет больше, чем сопротивление эмиттера, и слой широкозонного окна не будет эффективно способствовать растеканию носителей заряда, так как растекание будет в основном проходить через слой эмиттера. При содержании в стоп-слое Al менее 0,6 не будет обеспечиваться эффективная селективность для травления контактного подслоя, а в случае увеличения концентрации y>0,7, стоп-слой будет иметь тенденцию к деградации вследствие окисления из-за большого содержания алюминия.

В фотодетекторе лазерного излучения слой тыльного барьера может быть выполнен из n-AlzGa1-zAs толщиной 100 нм, где z=0,3, базовый слой из n-GaAs может быть выполнен толщиной 3200 нм, эмиттерный слой из p-GaAs может быть выполнен толщиной 400 нм, слой широкозонного окна из p-AlxGa1-xAs может быть выполнен толщиной 1000 нм, где x=0,20, широкозонный стоп-слой из p-AlyGa1-yAs может быть выполнен толщиной 50 нм, где y=0,65, а контактный подслой из p-GaAs может быть выполнен толщиной 300 нм.

В фотодетекторе лазерного излучения слой тыльного барьера из n-AlzGa1-zAs может быть легирован, например, атомами кремния на уровне (1-2)⋅1018 см-3, базовый слой из n-GaAs может быть легирован, например, атомами кремния на уровне (1-2)⋅1017 см-3, эмиттерный слой из p-GaAs может быть легирован, например, атомами цинка на уровне (1-2)⋅1018 см-3, слой широкозонного окна из p-AlxGa1-xAs может быть легирован, например, атомами цинка на уровне (1-2)⋅1019 см-3, широкозонный стоп-слой из p-AlyGa1-yAs может быть легирован, например, атомами кремния на уровне (1-2)⋅1018 см-3, а контактный подслой p-GaAs может быть легирован, например, атомами цинка на уровне (1-2)⋅1019 см-3.

Настоящее техническое решение поясняется чертежом, где:

на фиг. 1 представлено схематичное изображение поперечного сечения настоящего фотодетектора лазерного излучения;

на фиг. 2 приведен спектр квантовой эффективности фотодетектора лазерного излучения (кривая 8);

на фиг. 3 приведены напряжение холостого хода (кривая 9), фактор заполнения вольтамперной характеристики (кривая 10) и КПД преобразования лазерного излучения (кривая 11) в зависимости от энергетической освещенности и фототока.

Настоящий фотодетектор лазерного излучения показан на фиг. 1. Он включает подложку 1, выполненную из n-GaAs, и последовательно осажденные слои: слой 2 тыльного барьера, выполненный из n-AlGaAs с толщиной, например, 100 нм, базовый слой 3, выполненный из n-GaAs с толщиной, например, 3200 нм, эмиттерный слой 4, выполненный из p-GaAs с толщиной, например, 400 нм, слой 5 широкозонного окна из p-AlxGa1-xAs с толщиной, например, 1000 нм, широкозонный стоп-слой 6, выполненный из p-AlyGa1-yAs с толщиной, например, 50 нм, и контактный подслой 7, выполненный из p-GaAs с толщиной, например, 300 нм, при этом толщина широкозонного слоя 5 из p-AlxGa1-xAs составляет не менее 1 мкм при концентрации алюминия 0,15<х<0,25, а концентрация алюминия в широкозонном стоп-слое 6 находится в диапазоне 0,6<y<0,7.

Структура настоящего ФД представляет собой полупроводниковый p-n переход, разделяющий фотогенерированные носители за счет тянущего поля. При этом фотогенерированные носители диффундируют в сторону p-n перехода из глубины базового слоя 3 и эмиттерного слоя 4.

Выбранная конструкция ФД позволяет сократить потери на неполное поглощение фотонов в диапазоне 800-860 нм, для чего общая толщина фотопоглощающих слоев (эмиттерный и базовый) должна составлять не менее 3,5 мкм.

Наличие в структуре настоящего ФД слоя 2 тыльного барьера наряду с уровнем легирования базового слоя 3 порядка (1-2)⋅1017 см-3 позволяет обеспечить полное собирание фотогенерированных носителей из базового слоя 3. Увеличение уровня легирования будет приводить к снижению диффузионной длины таких носителей, что не позволит им достигнуть области р-n перехода для разделения. Отсутствие слоя 2 тыльного барьера приведет к диффузии части носителей в подложку 1 с их последующей потерей. Малая толщина эмиттерного слоя 4 настоящего ФД лазерного излучения позволяет также обеспечить полное собирание фотогенерированных носителей.

Важной особенностью ФД лазерного излучения является большая падающая световая мощность, что приводит к генерации значительной плотности фототока. В этом случае резистивные потери могут играть значительную роль, ограничивая КПД ФД. Последовательное сопротивление складывается из последовательного сопротивления слоев и подложки, сопротивления растекания между контактными шинками в верхних p-слоях, а также из переходного сопротивления между полупроводником и металлическими контактами. Сопротивление растекания, как правило, на несколько порядков выше, поэтому оно является основным фактором, лимитирующим КПД, однако в случае нанесения металлических контактов на широкозонные слои, в особенности слои, содержащие алюминий, переходное сопротивление может также стать ограничивающим КПД фактором.

Для минимизации резистивных потерь в настоящем ФД лазерного излучения включен слой 5 широкозонного окна из p-AlxGa1-xAs, с малым содержанием алюминия, высоким уровнем легирования и большой толщиной. При этом при концентрации алюминия более 10% он также исполняет роль лицевого барьера для эмиттерного слоя 4, препятствующего выходу фотогенерированных носителей. Это связано с тем, что при поглощении фотонов в диапазоне 800-860 нм не возникает «горячих» носителей с энергией, достаточной для выхода из эмиттерного слоя 4 в слой 5 широкозонного окна. Малая концентрация алюминия (менее 20%) в слое 5 широкозонного окна обеспечивает высокую удельную проводимость, которая, как известно, для слоев из AlGaAs уменьшается с увеличением концентрации алюминия из-за падения подвижности носителей заряда. Увеличение толщины контактного подслоя 7 приводит к пропорциональному уменьшению сопротивления растекания, так как ток при растекании между шинками течет вдоль слоя.

При изготовлении ФД лазерного излучения необходимо удаление контактного подслоя 7 между шинками, чтобы минимизировать поглощение лазерного излучения в нем. Это обычно достигается химическим жидкостным травлением GaAs. Для обеспечения возможности изготовления структуры ФД лазерного излучения стандартными пост-ростовыми методами в настоящий ФД лазерного излучения введен широкозонный стоп-слой 6, с концентрацией алюминия 60-70%, являющийся стоп-слоем для травления контактного подслоя 7.

Пример

Методом МОС-гидридной эпитаксии был изготовлен фотодетектор лазерного излучения на подложке из n-GaAs, включающий последовательно осажденные слои: слой тыльного барьера из n-AlGaAs толщиной 100 нм и уровнем легирования атомами кремния 1⋅1018 см-3, базовый слой из n-GaAs толщиной 3200 нм и уровнем легирования атомами кремния 1⋅1017 см-3, эмиттерный слой из p-GaAs толщиной 400 нм и уровнем легирования атомами цинка 1⋅1018 см-3, слой широкозонного окна из p-Al0,2Ga0,8As толщиной 1000 нм и уровнем легирования атомами цинка 1⋅1019 см-3, широкозонный стоп-слой из p-Al0.65Ga0.35As толщиной 50 нм и уровнем легирования атомами цинка 1⋅1018 см-3 и контактный подслой из p-GaAs толщиной 300 нм и уровнем легирования атомами цинка 1⋅1019 см-3.

Полученный ФД продемонстрировал высокий уровень квантового выхода в диапазоне 800-860 нм (фиг. 2), соответствующий практически полному поглощению фотонов и собиранию фотогенерированных носителей. При этом благодаря сниженному последовательному сопротивлению структуры ФД продемонстрировал КПД на уровне 59-60% вплоть до подводимой мощности лазерного излучения порядка 10 Вт/см2 и КПД более 54% вплоть до подводимой мощности лазерного излучения порядка 40 Вт/см2 (фиг. 3).

1. Фотопреобразователь лазерного излучения, включающий полупроводниковую подложку из n-GaAs, на которую последовательно нанесены слой тыльного барьера из n-AlGaAs, базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из p-AlxGa1-xAs толщиной не менее 1 мкм, где 0,15<x<0,25, широкозонный стоп-слой из p-AlyGa1-yAs, где 0,6<y<0,7, и контактный подслой из p-GaAs.

2. Фотопреобразователь лазерного излучения по п. 1, отличающийся тем, что слой тыльного барьера выполнен из n-AlzGa1-zAs толщиной 100 нм, где z=0,3, базовый слой из n-GaAs выполнен толщиной 3200 нм, эмиттерный слой из p-GaAs выполнен толщиной 400 нм, слой широкозонного окна из p-AlxGa1-xAs выполнен толщиной 1000 нм, где x=0,20, широкозонный стоп-слой из p-AlyGa1-yAs выполнен толщиной 50 нм, где y=0,65, а контактный подслой из p-GaAs выполнен толщиной 300 нм.

3. Фотопреобразователь лазерного излучения по п. 2, отличающийся тем, что слой тыльного барьера из n-AlzGa1-zAs легирован атомами кремния на уровне (1-2)⋅1018 см-3, базовый слой из n-GaAs легирован атомами кремния на уровне (1-2)⋅1017 см-3, эмиттерный слой из p-GaAs легирован атомами цинка на уровне (1-2)⋅1018 см-3, широкозонный слой из p-AlxGa1-xAs легирован атомами цинка на уровне (1-2)⋅1019 см-3, слой широкозонного окна из p-AlyGa1-yAs легирован атомами кремния на уровне (1-2)⋅1018 см-3, а контактный подслой из p-GaAs легирован атомами цинка на уровне (1-2)⋅1019 см-3.



 

Похожие патенты:

Изобретение может быть использовано для регистрации слабых световых сигналов в системах связи, мониторинга окружающей среды и других областях. Лавинный детектор содержит расположенные на одной и той же подложке фотопреобразователь оптического сигнала, подлежащего детектированию, в ток свободных носителей заряда и по меньшей мере один лавинный усилитель этого тока, имеющий два слоя: контактный и слой умножения, при этом слой умножения обращен к подложке, выполнен из полупроводникового материала того же типа проводимости, что и фотопреобразователь, и примыкает к этому фотопреобразователю, образуя с ним электрический контакт, при этом первый электрод размещен на контактном слое лавинного усилителя, а второй - на проводящей подложке.

Изобретение относится к микроэлектронике, а именно к интегральным фотоэлектрическим преобразователям. Ячейка фотоэлектрического преобразователя приемника изображения содержит фотодиод, транзистор считывания заряда, накопленного фотодиодом, транзистор предустановки, обеспечивающий восстановление исходного потенциала на фотодиоде, входной транзистор истокового повторителя, транзистор выборки строки и малошумящий делитель заряда, обеспечивающий выделение малой части заряда, накопленного фотодиодом за время релаксации, и ее передачу на затвор входного транзистора истокового повторителя с многократным повторением данной процедуры в течение времени кадра.

Изобретение относится к матричным фотоприемным устройствам (ФПУ) на основе фотодиодов (ФД), изготовленных по мезатехнологии в гетероэпитаксиальных полупроводниковых структурах III-V групп InGaAs/AlInAs/InP, преобразующих излучение в коротковолновой инфракрасной области спектра (0,9-1,7 мкм).

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц).

Изобретения могут быть использованы для формирователя сигналов изображения в инфракрасной области спектра. Гетероструктурный диод с p-n-переходом содержит подложку на основе HgCdTe, главным образом n-легированную, причем упомянутая подложка содержит первую часть (4), имеющую первую концентрацию кадмия, вторую часть (11), имеющую вторую концентрацию кадмия больше, чем первая концентрация кадмия, причем вторая часть(11) образует гетероструктуру с первой частью (4), р+-легированную зону (9) или р-легированную зону, расположенную в концентрированной части (11) и продолжающуюся в первую часть (4) и образующую p-n-переход (10) с n-легированным участком первой части (4), называемым базовой подложкой (1), при этом концентрированная часть (11) расположена только в р+-легированной зоне (9) и образует карман (12) по существу с постоянной концентрацией кадмия.

Изобретение относится к области микроэлектроники и касается пассивного беспроводного датчика ультрафиолетового излучения. Датчик включает в себя пьезоэлектрическую подложку, на рабочей поверхности которой в одном акустическом канале находятся приемо-передающий однонаправленный встречно-штыревой преобразователь (ВШП) и два отражательных ВШП.

Изобретение относится к полупроводниковым приборам, предназначенным для детектирования и испускания инфракрасного (ИК) излучения при комнатной температуре и может быть использовано, например, в устройствах, измеряющих характеристики сред, содержащих газообразные углеводороды, и в волоконно-оптических датчиках, измеряющих состав жидкости по методу исчезающей волны, для которых указанная полоса совпадает с максимумом фундаментального поглощения измеряемого компонента, например спирта или нефтепродуктов.

Напряжение обратного смещения прикладывают к матрице фотодиодов, снабженной множеством лавинных фотодиодов, функционирующих в гейгеровском режиме, и гасящих резисторов, соединенных последовательно с соответствующими лавинными фотодиодами.

Изобретение относится к инфракрасной технике и технологии изготовления устройств инфракрасной техники, конкретно к фотоприемным устройствам ИК-диапазона длин волн и к технологии их изготовления.

Изобретение относится к области полупроводниковых приборов, конкретно к полупроводниковым лавинным фотодетекторам с внутренним усилением сигнала, и может применяться для регистрации слабых потоков световых квантов, гамма излучения и заряженных ядерных частиц.

Изобретение может быть использовано в приемных антеннах для терагерцевого диапазона частот (от 300 ГГц до 4 ТГц). Cтруктура представляет собой полупроводниковую эпитаксиальную многослойную структуру, выращенную на подложке GaAs с кристаллографической ориентацией (111)А, состоящую из чередующихся матричных слоев нелегированного GaAs, выращенных в низкотемпературном режиме, и функциональных слоев GaAs, выращенных в стандартном высокотемпературном режиме и легированных атомами Si.

Изобретение может быть использовано для создания активного слоя в фотопроводящих антеннах-детекторах и генераторах электромагнитного излучения терагерцевого диапазона.

Изобретение относится к полупроводниковым фотопреобразователям, в частности к каскадным солнечным фотоэлементам, которые преобразуют энергию солнечного излучения в электрическую энергию, и может быть использовано в полупроводниковой промышленности для создания систем генерации электрической энергии.

Изобретение относится к солнечному элементу с проходящими между передним и задним контактом фотоактивными полупроводниковыми слоями со встроенным, соединяемым с передним контактом защитным диодом (шунтирующим диодом) с противоположной солнечному элементу полярностью и проходящим на передней стороне p-проводящим полупроводниковым слоем, на котором проходит туннельный диод.

Фотодиод для средневолнового инфракрасного излучения содержит подложку и полупроводниковые слои р- и n-типа проводимости, по крайней мере один из которых выполнен из твердого раствора, содержащего атомы индия, мышьяка, сурьмы, фосфора и примесей, с концентрацией носителей заряда в диапазоне от 1016 до 1018 см-3, слой, примыкающий к вышеупомянутому слою из твердого раствора, выполнен из полупроводника типа A3B5 с противоположным слою из твердого раствора типом проводимости и шириной запрещенной зоны, соразмерной с энергией фотонов вблизи низкоэнергетического края фоточувствительности фотодиода, при этом концентрация носителей заряда на границе слоев р- и n-типа проводимости изменяется плавно в направлении, перпендикулярном вышеупомянутой границе. Фотодиод согласно изобретению обеспечивает фоточувствительность к излучению в средней инфракрасной области спектра и малую барьерную емкость, что важно для регистрации быстропротекающих процессов. 1 з.п. ф-лы, 2 табл., 3 пр., 7 ил.

Изобретение относится к полупроводниковой электронике. Фотопреобразователь лазерного излучения включает подложку из n-GaAs, на которую последовательно нанесены слой тыльного барьера из n-AlGaAs, базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из n-AlxGa1-xAs, широкозонный стоп-слой из n-AlyGa1-yAs и контактный подслой из p-GaAs. Толщина слоя широкозонного окна из n-AlxGa1-xAs, где 0,15<x<0,25, составляет не менее 1 мкм, а в широкозонном стоп-слое из n-AlyGa1-yAs концентрация у алюминия составляет 0,6<y<0,7. Фотодетектор согласно изобретению обладает высоким уровнем квантовой эффективности в диапазоне 800-860 нм, а также пониженным последовательным сопротивлением. 2 з.п. ф-лы, 3 ил.

Наверх