Система электропитания, содержащая асинхронную машину, и двигатель, оснащенный такой системой электропитания

Изобретение обеспечивает источник электропитания, содержащий асинхронную машину, устройство для приведения ротора асинхронной машины во вращение посредством ротора двигателя и электрическое соединение для питания электрического оборудования посредством упомянутого ротора асинхронной машины, причем система асинхронная машина выполнена с возможностью приема электрической энергии переменного тока (АС) через статор асинхронной машины, и она представляет в заданном диапазоне скоростей привода ротора асинхронной машины при приведении ротором двигателя коэффициент полезного действия (КПД) переноса электрической энергии от статора к упомянутому ротору, которая является приоритетной относительно КПД, с которым механическая энергия вращения преобразуется в электрическую энергию. 2 н. и 11 з.п. ф-лы, 9 ил.

 

Область техники и уровень техники

Изобретение относится к системе электропитания, в частности, для питания электрического оборудования, установленного на вращающейся опоре. Изобретение также относится к двигателю, оснащенному такой системой электропитания.

Изобретение служит, в частности, для предоставления средства для электропитания оборудования, несомого лопастями ротора двигателя или лопастями двух роторов, вращающихся в противоположных направлениях, двигателя, такого как антиобледенительное оборудование для лопастей или систем для электрического позиционирования таких лопастей.

Известны системы электропитания для таких устройств, которые передают электричество от стационарных частей самолета или двигателя с помощью щеточных устройств, например, как описано в документе US 4621978. Однако эти устройства громоздки, не очень надежны и требуют регулярного технического обслуживания вместе с системой для их охлаждения при работе. Также выявлены проблемы, связанные с совместимостью с маслянистыми веществами, присутствующими в их среде.

Также известны вращающиеся трансформаторы, которые служат для передачи электричества от стационарных частей самолета или двигателя. Имеются такие трансформаторы, работающие на низкой частоте (менее 1 килогерца (кГц)), которые имеют конструкцию U-образной формы или Е-образной формы, с топологиями, направленными на решение проблемы слоистых материалов. В противоположность этому, в высокочастотных диапазонах (более 1 кГц), при высокой мощности (более 5 киловатт (кВт)), слоистые материалы теряют свои свойства, когда температура повышается (типично выше 200оС). Это приводит к увеличению до высоких уровней потерь и к трансформаторам, которые чувствительны к вибрации и ударам. Примером документа, описывающего вращающийся трансформатор в указанном контексте, является WO 2010/081654.

Также известен документ FR 2962271, который раскрывает доставку электричества на вращающуюся опору с использованием асинхронной машины, работающей как генератор с самовозбуждением.

Изобретение направлено на решение вышеуказанных проблем и на обеспечение решения, которое является надежным, которое требует незначительного технического обслуживания, характеризуется малым весом и ограниченным пространством для размещения.

Сущность изобретения

Для этой цели предложен источник электропитания, содержащий асинхронную машину, устройство для приведения ротора асинхронной машины во вращение посредством ротора двигателя и электрическое соединение для питания электрического оборудования посредством упомянутого ротора асинхронной машины, причем система отличается тем, что асинхронная машина также выполнена с возможностью приема электрической энергии переменного тока (АС) через статор упомянутой асинхронной машины, и она представляет, в заданном диапазоне скоростей привода ротора асинхронной машины, при приведении упомянутым ротором двигателя коэффициент полезного действия (КПД) переноса электрической мощности от упомянутого статора к упомянутому ротору, являющийся привилегированным (приоритетным) относительно КПД, с которым механическая энергия вращения преобразуется в электрическую энергию.

Путем выбора этого варианта конструкции асинхронная машина может быть установлена для питания электрического оборудования через ее ротор, причем упомянутая машина имеет вес и объем, которые значительно меньше, чем вес и объем асинхронного генератора того типа, который раскрыт в предшествующем уровне техники. Преимущество использования асинхронной машины по сравнению с использованием вращающегося трансформатора с U-образным сердечником или Е-образным сердечником сохраняется, поскольку здесь отсутствует проблема слоистых материалов. Требования по техническому обслуживанию весьма низкие.

В конкретном варианте осуществления асинхронная машина имеет правоходовую волновую обмотку, по меньшей мере, в роторе или в статоре. Это служит увеличению надежности асинхронного трансформатора.

В конкретном варианте осуществления асинхронная машина имеет обмотку только с одной проводящей шиной на паз. Число требуемых соединений, таким образом, уменьшается, позволяя снизить вес и размер устройства.

В другом аспекте изобретение также обеспечивает двигатель, имеющий ротор, несущий электрическое оборудование, причем ротор включает в себя, по меньшей мере, одну систему электропитания, электрическое оборудование подсоединено к электрическому соединению системы питания. Такой двигатель предоставляет улучшенную производительность, поскольку он использует устройство, которое легче по весу, более компактное и более надежное для цели электропитания электрического оборудования, несомого ротором двигателя.

В различных возможных конфигурациях упомянутый статор асинхронной машины выполнен с возможностью приема АС электрической энергии от двигателя через генератор, от коробки приводов агрегатов (AGB) двигателя или от АС электропитания. В других возможных конфигурациях, которые являются различными, упомянутый статор асинхронной машины является неподвижным относительно гондолы двигателя или неподвижным относительно второго ротора двигателя.

В конкретном варианте осуществления двигатель включает в себя второй ротор, несущий второе электрическое оборудование, причем двигатель имеет по меньшей мере одну вторую систему электропитания, как упомянуто выше, причем второе электрическое оборудование подсоединено к электрическому соединению второй системы электропитания, при этом две системы электропитания размещены параллельно для приема АС электрической энергии от общего источника через соответствующие статоры. Нетуннельный (без обтекателя) вентилятор, имеющий два ротора противоположного вращения, может оснащаться таким образом.

В различных возможных конфигурациях соединение между электрическим оборудованием и электрическим соединением с системой электропитания проходит через механический силовой редуктор или через вращающийся трансформатор, или через генератор, или через второй ротор двигателя, который вращается в противоположном направлении к первому ротору.

Электрическое оборудование может, в частности, содержать устройство для удаления льда с лопасти или систему для электрического позиционирования лопасти.

Краткое описание чертежей

Изобретение описано ниже со ссылкой на следующие иллюстрирующие чертежи:

Фиг.1 показывает обобщенный вариант осуществления системы электропитания согласно изобретению;

Фиг.2 показывает конкретный аспект варианта осуществления по фиг.1;

Фиг.3 - другой вид конкретного аспекта фиг.2;

Фиг.4 - другой вид конкретного аспекта фиг.2 и 3;

Фиг.5 - другой вид конкретного аспекта фиг.2-4;

Фиг.6 показывает вариант осуществления двигателя согласно изобретению;

Фиг.7 показывает некоторые аспекты реализации варианта осуществления по фиг.6;

Фиг.8 показывает другой вариант осуществления двигателя согласно изобретению;

Фиг.9 показывает некоторые аспекты реализации варианта осуществления по фиг.8.

Детальное описание изобретения

Фиг.1 показывает систему электропитания в обобщенном варианте осуществления изобретения. Она содержит машину 100, состоящую из ротора 110 и статора 120. Ротор 110 соединен с механическим устройством 130, чтобы обеспечивать возможность приведения его в действие ротором двигателя. Роторные обмотки подсоединены к электрическому соединению 140 для электропитания электрического оборудования. Статорные обмотки подсоединены к электрическому соединению 150 для приложения электрической энергии, в частности электрической энергии переменного тока. Для ротора асинхронной машины, приводимого в заданном диапазоне скоростей привода ротором двигателя, асинхронная машина 100 имеет КПД в переносе электрической энергии от статора 120 к ротору 110, являющийся приоритетным относительно КПД, с которым механическая энергия вращения преобразуется в электрическую энергию. Это обеспечивается проектированием: эффект трансформатора оптимизируется для диапазона скоростей вращения в ущерб отбираемому моменту.

К примеру, ротор 110 может быть снабжен сбалансированной трехфазной обмоткой. Для этой цели машина имеет то же самое число пар полюсов на статоре и на роторе, или она имеет обмотку, которая способна адаптироваться к сбалансированному трехфазному электричеству.

Например, одна возможная конструкция для системы по фиг.1 использует шесть пар полюсов с воздушным зазором 1 миллиметр (мм). Напряжение 120 вольт (В) в среднеквадратичном (rms) прикладывается к статору (относительно нейтрали) при 600 герцах (Гц) для подаваемой электрической мощности 24,7 кВт, когда ротор асинхронной машины приводится при 15 Гц. Напряжение, получаемое от ротора, имеет тогда частоту 690 Гц, rms амплитуду 108 В (относительно нейтрали) и доставляемую мощность 24 кВт. Можно видеть, что механическая мощность 3,3 кВт снимается с ротора и что машина приводит только к потерям 4 кВт, по существу связанным с функцией трансформатора.

Заданный диапазон скоростей для ротора асинхронной машины, приводимой ротором двигателя, в котором КПД переноса электрической энергии от статора 120 к ротору 110 является приоритетным относительно КПД, с которым механическая энергия вращения преобразуется в электрическую энергию, расположен вокруг частоты вращения 15 Гц, например, диапазон от 10 Гц до 20 Гц или диапазон от 14 Гц до 16 Гц. В показанном примере эффект оптимизации выявлен по низкому значению потерь (4 кВт) во взаимосвязи с 3,3 кВт мощности, отбираемой из мощности, доставляемой двигателем, упомянутая мощность далека от оптимизированной, поскольку отбором мощности специально пренебрегали, чтобы оптимизировать эффект трансформатора.

Мощность, доставляемая на электрическое соединение 140, регулируется путем настройки мощности, прикладываемой электрическим соединением 150. При некоторых условиях мощность, требуемая в статоре, может быть меньше, чем выходная мощность с ротора, из-за мощности, доставляемой двигателем. Нагрузку можно наблюдать через асинхронную машину, чтобы определить ее рабочее состояние.

Мощность может передаваться с ротором, который является неподвижным, в этом случае операция соответствует только трансформаторному типу.

Определено, что асинхронная машина может иметь топологию типа, определяющего радиальную или аксиальную вариацию потока.

Фиг.2 показывает вариант осуществления обмотки ротора или статора машины 100, показанной на фиг.1. Тот же самый тип обмотки может быть использован как на статоре, так и на роторе, однако также можно использовать различные обмотки на роторе и на статоре. Обмотка является правоходовой волновой обмоткой, что делает возможным использование только одной проводящей шины на паз ротора или статора, тем самым снижая риск коротких замыканий между шинами.

На фиг.2 показаны 14 пазов, которые пронумерованы от 201 до 214, и обмотка имеет девять проводников, пронумерованных от 301 до 309. В показанном варианте осуществления каждый полюс имеет три проводящих шины, соединенных параллельно с той же самой фазой трехфазного напряжения.

Таким образом, проводящие участки 301, 302 и 303 вставлены в последовательные пазы 201, 202 и 203, формируя первый полюс. На выходе из соответствующих пазов все три проводника 301, 302 и 303 изогнуты под прямыми углами в том же самом направлении и проходят через пазы 212, 211 и 210, соответственно (т.е. вдоль периферии ротора или статора, причем первый проводник, выходящий из своего паза, является затем последним, который входит в другой паз).

Участки проводников между пазами образуют свесы (выносы) проводников, представляющие бесполезно израсходованный объем и вес, и использование правоходовой волновой обмотки позволяет уменьшить их длины. Проводники 304, 305 и 306, соединенные параллельно со второй фазой трехфазного АС напряжения, занимают соответствующие пазы 204, 205 и 206, и после того, как они изгибаются под прямым углом и занимают секции типа свеса, они возвращаются в соответствующие пазы (не показаны), обозначенные ссылочными позициями 214 и 213 на чертеже (вновь первый проводник, выходящий из своего паза, затем последним входит в следующий паз). На чертеже также показаны проводники 307, 308 и 309, которые занимают пазы 207, 208 и 209 и которые соединены параллельно с третьей фазой трехфазного напряжения. Свесы проводников 301, 302 и 303 между пазами 201, 202, 203 и 210, 211, 212 расположены в этом варианте осуществления на расстоянии от пазов, в то время как свесы проводников 304, 305 и 306 между пазами 204, 205, 206 и 213, 214 расположены близко к пазам.

Фиг.3 показывает проводники одной фазы в сквозном виде для варианта осуществления по фиг.2. Проводники соединены с внешней электрической цепью на своих концах 351 и 352. Этот чертеж показывает свесы на двух расстояниях от пазов в следующей последовательности: ближний свес, дальний свес, ближний свес, дальний свес, ближний свес. При такой конфигурации, вновь, первый проводник, выходящий из своего паза, затем последним входит в другой паз.

Фиг.4 показывает проводники трех фаз в варианте фиг.2 и 3. В этом примере имеется три проводящих шины на полюс, как на предыдущих фигурах. Один проводник используется для каждой фазы. Он следует трем полным виткам вокруг периферии ротора или статора между своими двумя свободными концами, и он соединен с заземлением ротора или статора в четырех точках, две из которых находятся близко к первому свободному концу, и две из которых находятся близко ко второму свободному концу. Ссылочные позиции 410 и 420 использованы, чтобы показать свободные концы одного из трех проводников. Та же самая схема соединения используется для двух других соединителей. При приближении к одному из двух свободных концов, который имеет ссылочную позицию 410, проводник пересекает два участка того же самого проводника, делающего полные витки вокруг периферии, прежде чем следовать им параллельным образом, в то время как при приближении ко второму из двух концов, обозначенному ссылочной позицией 420, проводник следует двум участкам того же самого проводника, следующего полным виткам вокруг периферии, параллельным образом, не пересекая их. Соединения, близкие к свободному концу с пересечением, обозначены как 411 и 412, а соединения, близкие к свободному концу без пересечения, обозначены как 421 и 422.

Фиг.5 показывает проводник одной фазы, из конца в конец, и определено, что если имеется n проводящих шин на полюс, то фиг.5 показывает только число витков проводника, деленных на n, только для одной из трех фаз.

Фиг.6 показывает возможную реализацию изобретения на двигателе, имеющем два ротора в противовращении, например, таких как нетуннельные вентиляторы.

АС электричество получают либо от электрической сети 610 летательного аппарата, либо от AGB 615, либо от двигателя 620 (свободная турбина, первый ротор или задний (Aft) ротор или второй ротор или передний (Fwd) ротор). При использовании AGB или ротора используется соответствующий генератор 616 или 621. Переключатель 625 под управлением системы 626 управления позволяет опционально выбирать источник электричества. Если необходимо, он включает в себя преобразователь мощности для преобразования мощности для подачи в асинхронную машину. Электрическая мощность переносится от стационарной системы отсчета А к двум противоположно вращающимся вращательным системам отсчета В и С посредством двух трансформаторов 630 и 631, соединенных параллельно друг с другом на выходе переключателя 625. Системами отсчета В и С являются два ротора, передний (Fwd) 640 и задний (Aft) 641 соответственно. Электрическая мощность, в конечном счете, отбирается к устройствам, которые предназначены для питания на лопастях этих роторов, обозначенных соответствующими ссылочными позициями 650 и 651.

Трансформаторы 630 и 631 являются системами электропитания, как описано со ссылками на фиг.1-5.

Модификация варианта осуществления по фиг.6 показана на фиг.7, которая показывает другие детали варианта осуществления. АС электрическая мощность (ссылочная позиция 625) подается на статор двигателя (система отсчета А) двумя проводящими линиями 700 и 710, первая из которых включает в себя трансформатор 630 и продолжается до лопастей 650 ротора 640, и вторая из которых включает в себя трансформатор 610 и продолжается через механизм 720 силового редуктора (PGB) до достижения лопастей 651 ротора 641. Различные подшипники показаны на чертеже, чтобы указать относительные вращения между различными элементами.

Фиг.8 показывает другой возможный вариант осуществления изобретения, а именно, на двигателе, имеющем два противоположно вращающихся ротора.

АС получают, как и выше, - либо от электрической сети 610 летательного аппарата, либо от AGB 615, либо от двигателя 620.

Электрическая мощность первоначально переносится от стационарной системы отсчета А к вращательной системе отсчета В параллельно трансформатором 810 и трансформатором 820, который может также быть генератором 820. Система отсчета В является системой отсчета переднего (Fwd) ротора 640. Лопасти 650 ротора 640 запитываются трансформатором 810. Трансформатор 830 переносит энергию, доставляемую трансформатором или генератором 820, от системы отсчета В к системе отсчета С. Система отсчета С является системой отсчета заднего (Aft) ротора 641. Лопасти 651 ротора 641 запитываются трансформатором 830. Трансформаторы 830 и 810, и опционально трансформатор 820, являются системами электропитания, как описано со ссылкой на фиг.1-5.

Это последовательное соединение служит для того, чтобы смягчать некоторые ограничения интеграции.

Модификация варианта осуществления по фиг.8 показана на фиг.9 с другими деталями варианта осуществления. АС электрическая мощность (ссылочная позиция 625) подается на статор двигателя (система отсчета А) проводящими линиями 900 и 910, первая из которых включает в себя трансформатор 810 и продолжается до лопастей 650 ротора 640, в то время как вторая из них включает в себя трансформатор или генератор 910 и трансформатор 830 и продолжается до лопастей 651 ротора 641. Различные подшипники показаны на чертеже, чтобы указать относительные вращения между различными элементами. В этом варианте линии электропитания избегают механизма PGB.

Изобретение описано выше со ссылками на варианты осуществления, которые являются не ограничительными, и оно распространяется на любой вариант в пределах объема пунктов формулы изобретения.

1. Бесщеточная система электропитания по меньшей мере одного вращающегося электрического оборудования, содержащая асинхронную машину (100), устройство (130) для приведения ротора (110) асинхронной машины во вращение посредством ротора двигателя и электрическое соединение (140) для питания при вращении упомянутого по меньшей мере одного электрического оборудования посредством упомянутого ротора асинхронной машины, причем асинхронная машина (100) также выполнена с возможностью приема электрической энергии переменного тока (АС) через статор (120) упомянутой асинхронной машины, причем бесщеточная система электропитания отличается тем, что упомянутая асинхронная машина имеет одинаковое число пар полюсов на упомянутом статоре и на упомянутом роторе и правоходовую волновую обмотку с одной проводящей шиной (301-309) на паз (201-214) по меньшей мере в упомянутом роторе или упомянутом статоре, так, что она имеет в заданном диапазоне скоростей привода упомянутым ротором двигателя ротора асинхронной машины коэффициент полезного действия (КПД) переноса электрической энергии от упомянутого статора (120) к упомянутому ротору (110), являющийся приоритетным относительно КПД, с которым механическая энергия вращения преобразуется в электрическую энергию, для оптимизации эффекта трансформатора асинхронной машины для упомянутого заданного диапазона скоростей привода в ущерб отбираемому моменту на упомянутом роторе асинхронной машины.

2. Двигатель самолета, в котором по меньшей мере одна лопасть ротора (640, 641) несет электрическое оборудование, причем двигатель включает в себя по меньшей мере одну бесщеточную систему электропитания (630, 631; 810, 830) по меньшей мере одного вращающегося электрического оборудования по п.1, причем электрическое оборудование подсоединено к электрическому соединению системы электропитания.

3. Двигатель по п.2, в котором упомянутый статор асинхронной машины выполнен с возможностью приема электрической энергии переменного тока (АС) от двигателя (620) через генератор (621).

4. Двигатель по п.2 или 3, в котором упомянутый статор асинхронной машины выполнен с возможностью приема электрической энергии переменного тока (АС) от коробки (615) приводов агрегатов двигателя через генератор (615).

5. Двигатель по п.2 или 3, в котором упомянутый статор асинхронной машины выполнен с возможностью приема электрической энергии переменного тока (АС) от сети электропитания (610) переменного тока (АС).

6. Двигатель по п.2 или 3, в котором упомянутый статор асинхронной машины (630, 631; 810) является неподвижным относительно гондолы (А) двигателя.

7. Двигатель по п.2 или 3, в котором упомянутый статор асинхронной машины (830) является неподвижным относительно ротора (640) двигателя.

8. Двигатель по п.2 или 3, включающий в себя второй ротор (640, 641), несущий по меньше мере одно второе электрическое оборудование, причем двигатель имеет по меньшей мере одну вторую бесщеточную систему электропитания (630, 631; 810, 830) по меньшей мере одного вращающегося электрического оборудования по п.1, причем второе электрическое оборудование подсоединено к электрическому соединению второй системы электропитания, при этом две бесщеточные системы электропитания размещены параллельно для приема, через соответствующий статор, электрической энергии переменного тока (АС) от общего источника (625).

9. Двигатель по п.2 или 3, в котором соединение между электрическим оборудованием и электрическим соединением системы электропитания проходит через механический силовой редуктор (720).

10. Двигатель по п.2 или 3, в котором соединение между электрическим оборудованием и электрическим соединением системы электропитания проходит через вращающийся трансформатор (820).

11. Двигатель по п.2 или 3, в котором соединение между электрическим оборудованием и электрическим соединением системы электропитания проходит через второй ротор (640) двигателя, вращающийся в направлении, противоположном первому ротору (641).

12. Двигатель по п.2 или 3, в котором электрическое оборудование содержит устройство для удаления льда с лопасти.

13. Двигатель по п.2 или 3, причем электрическое оборудование содержит систему для электрического позиционирования лопасти.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в качестве электромеханического преобразователя механической энергии, подаваемой на один (механический) вход машины, и электрической энергии постоянного тока, подаваемой на другой ее вход (электрический), в суммарную электрическую энергию переменного тока с возможностью работы как отдельно от каждого источника, так и совместно.

Изобретение относится к электротехнике и может быть использовано в качестве электромеханического преобразователя механической энергии, подаваемой на один (механический) вход машины, и электрической энергии постоянного тока, подаваемой на другой ее вход (электрический), в суммарную электрическую энергию переменного тока с возможностью работы как отдельно от каждого источника, так и совместно.

Изобретение относится к области электромашиностроения и может быть использовано в качестве электромеханического преобразователя механической энергии, подаваемой на один (механический) вход машины, и электрической энергии постоянного тока, подаваемой на другой ее вход (электрический), в суммарную электрическую энергию переменного тока с возможностью работы как отдельно от каждого источника, так и совместно.

Изобретение относится к электротехнике, в частности к бесконтактным электромагнитным редукторам. Технический результат - увеличение передаваемой мощности в установившемся и динамическом режимах с сохранением возможности регулирования коэффициента редукции.

Использование: в области электротехники. Технический результат заключается в увеличении количества и равномерности поступления электрической энергии m-фазного переменного тока, а также повышении надежности и стабильности работы энергосистемы.

Изобретение относится к электротехнике, а именно к электрической трансмиссии со сверхпроводящими обмотками. Сверхпроводниковая трансмиссия включает: входной вал и входной электромеханический преобразователь, содержащий статор с многофазными обмотками и ротор, установленный на входном валу, по меньшей мере один выходной вал и по меньшей мере один выходной электромеханический преобразователь, содержащий статор с многофазными обмотками и ротор, установленный на выходном валу; термоизолированный контейнер, обеспечивающий температурный режим сверхпроводящего состояния размещенных в нем обмоток статоров входного и выходного электромеханических преобразователей и кабеля, выполненных из сверхпроводящего материала и соединенных в единый электрический контур.

Изобретение относится к области электротехники и может быть использовано для управления генератором. Техническим результатом является увеличивается частоты вращения вала до определенного предела без использования дополнительных энергоресурсов.

Изобретение относится к электротехнике, а именно к бесконтактным электромагнитным редукторам. Электромагнитный редуктор содержит корпус с установленными в нем статором с многофазной обмоткой, подключенной к источнику напряжения регулируемой частоты, с первым и вторым роторами, жестко установленными на входном и выходном валах, соответственно.

Изобретение относится к электромагнитным механизмам, а именно к бесконтактным магнитным редукторам, и может быть использовано в качестве передаточного устройства в механических системах с большим ресурсом работы при ударных нагрузках.

Изобретение относится к области электротехники и может быть использовано в электроэнергетических системах распределения генерируемой электроэнергии. Техническим результатом является обеспечение эксплуатационной надежности электроэнергетической системы за счет трансформации отношения между тихоходным и быстроходным валами для исключения режима аварийного перехода генераторов в асинхронный режим.

Изобретение относится к электротехнике и может быть использовано в асинхронных генераторах для автономных источников электроэнергии. Технический результат - снижение электрических потерь.

Изобретение относится к области электротехники и может быть использовано в электроэнергетической отрасли для преобразования механической энергии в электрическую с частотой выходного напряжения, не зависящей от скорости вращения генератора.

Изобретение относится к электротехнике, в частности к асинхронным генераторам с конденсаторным самовозбуждением, и может быть использовано в устройствах ручной дуговой электросварки.

Изобретение относится к системе преобразования механической энергии в электрическую, которая, в частности, подходит для использования в системах преобразования ветровой энергии.

Изобретение относится к области электротехники, в частности к электрическим генераторам с конденсаторным самовозбуждением, и может быть использовано в устройствах ручной дуговой электросварки.

Изобретение относится к области электротехники, в частности - к асинхронным генераторам с конденсаторным самовозбуждением, и может быть использовано в устройствах ручной дуговой сварки.

Изобретение относится к области электротехники и может быть использовано при проектировании автономных электростанций с приводом от двигателя внутреннего сгорания.

Изобретение относится к области электротехники и электромашиностроения, в частности к устройствам для возбуждения асинхронного генератора, и может быть применено для различных асинхронных машин, используемых для работы в генераторном режиме.

Изобретение относится к области электротехники, а именно к специальным электрическим машинам, и касается конструкций асинхронных генераторов (АГ) с самовозбуждением, используемых в установках автономного электроснабжения.

Изобретение относится к электротехнике. .

Изобретение относится к электротехнике. Технический результат состоит в упрощении конструкции.

Изобретение обеспечивает источник электропитания, содержащий асинхронную машину, устройство для приведения ротора асинхронной машины во вращение посредством ротора двигателя и электрическое соединение для питания электрического оборудования посредством упомянутого ротора асинхронной машины, причем система асинхронная машина выполнена с возможностью приема электрической энергии переменного тока через статор асинхронной машины, и она представляет в заданном диапазоне скоростей привода ротора асинхронной машины при приведении ротором двигателя коэффициент полезного действия переноса электрической энергии от статора к упомянутому ротору, которая является приоритетной относительно КПД, с которым механическая энергия вращения преобразуется в электрическую энергию. 2 н. и 11 з.п. ф-лы, 9 ил.

Наверх