Способ определения содержания водорода в порошке нестехиометрического гидрида титана

Использование: для определения содержания водорода в порошке нестехиометрического гидрида титана. Сущность изобретения заключается в том, что определение содержания водорода в порошке нестехиометрического гидрида титана состава TiHx (x<1,5) методом рентгеновской дифракции заключается в определении фазового состава анализируемого образца методом качественного рентгенофазового анализа, а также в определении массового содержания α- и δ-фаз методом количественного рентгенофазового анализа, после чего по полученной ранее калибровочной зависимости, используя массовое содержание δ- или α-фазы, определяют содержание водорода в анализируемом образце. Технический результат: обеспечение возможности определения содержания водорода в порошке гидрида титана состава TiHx (х<1,5) и контроля фазового состава в порошке гидрида титана состава TiHx (x<1,5), а также обеспечение возможности сокращения времени анализа и проведения неразрушающего контроля анализируемых образцов нестехиометрического гидрида титана. 3 ил., 1 табл.

 

Способ относится к контрольно-измерительной технике и предназначен для определения содержания водорода в порошке гидрида титана состава TiHx (x<1,5). Способ может применяться для контроля технологии получения и качества порошка гидрида титана.

Согласно фазовой диаграмме титан-водород (см. фиг. 1) гидрид титана состава TiHx (x<1,5) содержит следующие кристаллические фазы [Numakura, Н. Neutron diffraction study of the metastable у titanium deuteride / H. Numakura, M. Koiwa, H. Asano, F. Izumi. // ActaMetallurgica. 1988. Vol. 36. №8. P. 2267-2273 (1)]:

α - твердый раствор в гексагональной решетке титана;

δ - гидрид титана с ГЦК решеткой (а.о. H/Ti≈1,5).

В данной области также обнаруживается мета стабильная γ-фаза - гидрид титана (а.о. H/Ti=1) с тетрагональной решеткой (с/а≈1.09).

В настоящее время содержание водорода в порошке гидрида титана определяют волюмометрическим методом путем сплавления порошка с медью при температуре около 900°C в вакуумной установке и определением объема выделившегося газа [Гидриды металлов. Под редакцией В. Мюллера, Д. Блэкледжа и Дж. Либовица. Перевод с англ. В.А. Бутова. В.П. Калинина. Ф.И. Тазетдинова и А.С. Черникова. - М.: Атомиздат. 1973. С. 53]. Недостатком данного метода является то, что образец при проведении анализа сплавляется с медью и не может использоваться для дальнейших исследований.

Известен также способ определения содержания водорода на основе построения калибровочной зависимости плотности гидрида титана (определяемой пикнометрическим методом) от газосодержания [Гидрида металлов. Под редакцией В. Мюллера, Д. Блэкледжа и Дж. Либовица. Перевод с англ. - М.: Атомиздат, 1973. С. 299]. Недостатком данного способа является низкая точность определения газосодержания, обусловленная большими погрешностями в определении плотности порошковых материалов. Для проведения данного анализа необходимо достаточно большое количество порошка. Кроме того, данный способ характеризуется длительностью проведения анализа.

При изготовлении гидрида титана состава TiHx (<1,5) могут быть получены образцы в неравновесном химическом состоянии, что может привести к вариациям фазового состава. В этом случае контроль качества порошка гидрида титана путем определения содержания водорода является недостаточным.

При патентно-информационном поиске не выявлены источники информации, в которых описаны способы одновременного определения содержания водорода и фазового состава нестехиометрического гидрида титана.

Задачей настоящего изобретения является неразрушающий контроль газосодержания и фазового содержания порошка гидрида титана состава TiHx (x<1,5).

Технический результат, достигаемый при использовании настоящего способа, заключается в следующем:

- определение содержания водорода в порошке гидрида титана состава TiHx (х<1,5);

- контроль фазового состава в порошке гидрида титана состава TiHx (x<1,5) путем определения массового содержания α- и δ-фаз (возможно γ-фазы);

- возможность сокращения времени анализа, проведения экспресс-анализа для контроля фазового состава;

- неразрушающий контроль анализируемых образцов нестехиометрического гидрида титана.

Для решения поставленной задачи и достижения указанного технического результата предлагается способ определения содержания водорода в порошке гидрида титана состава TiHx (x<1,5) методом рентгеновской дифракции, заключающийся в определении фазового состава анализируемого образца методом качественного рентгенофазового анализа, определении массового содержания α- и δ-фаз методом количественного рентгенофазового анализа, затем по полученной ранее калибровочной зависимости, используя массовое содержание δ- или α-фазы, определяют содержание водорода в анализируемом образце.

Согласно фазовой диаграмме титан-водород (см. фиг. 1) при комнатной температуре и давлении 0,1 МПа гидрид титана состава TiHx (x<1,5) содержит следующие кристаллические фазы [1];

α - твердый раствор в гексагональной решетке титана;

δ - гидрид титана с ГЦК решеткой (а.о. Н/Ti≈1,5).

При определенных экспериментальных режимах получения нестехиометрического гидрида титана в данной области также обнаруживается метастабидьная γ-фаза - гидрид титана (а.о. H/Ti=1) с тетрагональной решеткой (с/а≈1,09).

Для построения калибровочной зависимости должны быть получены образцы гидрида титана состава TiHx (x<1,5) в состоянии, близком к химическому равновесию, т.е. содержать α-фазу и δ-фазу (а.о. H/Ti≈1,5). Допускается наличие низкого содержания γ-фазы (менее 1 мас. %). Количественный рентгенофазовый анализ полученных образцов рекомендуется проводить методом Ритвельда [Rietveld. Н.М. A profile refinement method for nuclear and magnetic structures / H.M. Rietveld // Journal of Applied Crystallography. 1969. Vol. 2. P. 65; Young, R.A. The Rietveld Method / R.A. Young - New York: International Union of Crystallography Oxford University Press, 1996]. По результатам анализа определяют массовое содержание α- и δ-фаз. Затем зависимость массового содержания δ-фазы (или α-фазы) от газосодержания аппроксимируют линейной функцией для получения калибровочной кривой.

Далее определяют фазовый состав анализируемого образца гидрида титана методом качественного рентгенофазового анализа, затем массовое содержание α- и δ-фаз (допускается присутствие низкого содержания γ-фазы) методом количественного рентгенофазового анализа. По полученной ранее калибровочной зависимости, используя массовое содержание δ- или α-фазы в анализируемом образце, определяют газосодержание. Заявляемый способ анализа позволяет осуществлять неразрушающий контроль анализируемых образцов и использовать их для дальнейшего исследования.

На фиг. 1 приведена фазовая диаграмма системы титан-водород (0,1 МПа).

На фиг. 2 приведена зависимость массового содержания δ-фазы от газосодержания дейтерида титана состава TiDx (х<1,5) (у=0,300х-3,37; R=0,9998, Р=0,95).

На фиг. 3 приведена зависимость массового содержания α-фазы от газосодержания дейтерида титана состава TiDx (x<1,5) (у=-0(301x+103,32; R=0.9998, Р=0,95).

Предлагаемый способ осуществляется следующим образом.

На лабораторной вакуумной установке типа Сивертса получают 5-10 порошковых образцов гидрида титана состава TiHx (x<1,5) массой 1,0 г каждый. Методом волюмометрического анализа определяют газосодержание образцов, используя навески массой 0.5 г.

Для проведения рентгенофазового анализа навески образцов массой 0,5 г истирают пестиком в агатовой ступке в дисперсионной среде (например, гексане) в течение примерно 5 минут. После высыхания каждого образца навеску массой 0,15 г наносят на кювету для съемки, добавляют 4-5 капель этилового спирта, разравнивают для формирования гладкой поверхности. После высыхания устанавливают кювету для съемки в держатель образцов гониометра рентгеновского дифрактометра и проводят регистрацию дифрактограммы в области дифракционных углов 30-45° 2θ (рентгеновское CuKα1,2 излучение). Методом качественного рентгенофазового анализа проводят анализ фазового состава - исследуемого образца. При обнаружении неравновесного состояния, обусловленного, например, наличием следующего набора фаз:

- α-фаза и δ-фаза (а.о. H/Ti>1,5);

- α-фаза, δ-фаза (а.о. H/Ti≈1,5) и δ-фаза (а.о. H/Ti>1,5) и др.

Образец должен быть забракован и не использоваться для дальнейшего анализа.

В случае идентифицирования α- и δ- (a.o. H/Ti≈1,5) фаз (допускается присутствие низкого содержания γ-фазы - менее 1 мас. %) проводят регистрацию дифрактограммы в области дифракционных углов 30-150 °2θ (рентгеновское CuKα1.2 излучение). Методом количественного рент генофазового анализа (рекомендуется использовать метод Ритвельда) определяют массовое содержание α- и δ-фаз (возможно γ-фазы). Для проведения количественного анализа проводят три параллельных определения с использованием трех различных навесок образца по 0,15 г каждая. Но результатам трех определений рассчитывают среднее арифметическое и среднее квадратическое отклонение массового содержания α- и δ-фаз. Строят зависимости массового содержания α- и δ-фаз от газосодержания. Методом взвешенных наименьших квадратов аппроксимируют экспериментальные точки линейной функцией. В качестве весов используют значения обратные дисперсиям соответствующих параметров. По результатам аппроксимации определяют коэффициенты линий регрессии. К примеру, на фиг. 2 и 3 представлены калибровочные зависимости массового содержания α- и δ-фаз от газосодержания дейтерида титана состава TiDx (х<1,5).

Любую из полученных калибровочных зависимостей используют для определения газосодержания анализируемых образцов следующим образом. Вновь полученный образец массой 0,5 г истирают пестиком в агатовой ступке в дисперсионной среде (например, гексане) в течение примерно 5 минут. После высыхания образца навеску массой 0,15 г наносят на кювету для съемки, добавляют 4-5 капель этилового спирта, разравнивают для формирования гладкой поверхности. После высыхания устанавливают кювету для съемки в держатель образцов гониометра рентгеновского дифрактометра и проводят регистрацию дифрактограммы в области дифракционных углов 30-45° 2θ (рентгеновское CuKα1,2 излучение). Методом качественного рентгенофазового анализа проводят экспресс-анализ фазового состава исследуемого образца. При обнаружении неравновесного состояния, обусловленного, например, наличием следующего набора фаз:

- α-фаза и δ-фаза (а.о. Н/Ti>1,5);

- α-фаза, δ-фаза (а.о. H/Ti≈1,5) и δ-фаза (а.о. Н/Ti>1,5) и др. анализируемый образец должен быть забракован.

В случае идентифицирования α- и δ-(a.o. H/Ti≈1,5) фаз (допускается присутствие низкого содержания γ-фазы) проводят регистрацию дифрактограммы в области дифракционных углов 30-150° 2θ (рентгеновское CuKα1,2 излучение). Затем методом количественного рентгенофазового анализа определяют массовое содержание α- и δ-фаз (возможно γ-фазы). Для проведения количественного анализа используют две различные навески образца по 0,15 г каждая. По результатам двух определений рассчитывают средние арифметические значения массового содержания α- и δ-фаз (возможно γ-фазы). Таким образом осуществляют контроль фазового состава порошка гидрида титана состава TiHx (x<1,5). Используя полученные значение массового содержания α- или δ-фаз, определяют газосодержание анализируемого образца по одной из полученных ранее калибровочных зависимостей. Таким образом определяют содержание водорода в порошке гидрида титана состава TiHx (x<1,5).

Для сокращения времени анализа в составе дифрактометра используют позиционно-чувствительный детектор для регистрации рентгеновских квантов. Так, с использованием детектора Mythen 1K [Bergamasehi, A. The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source / A. Bergamasehi. A. Cervellino, R. Dmapoli, F. Gozzo, B. Henrich, I. Johnson, P. Kraft, A. Mozzanica, B. Schmitt, X. Shi // Journal of Synchrotron Radiation. 2010. Vol. 17. P. 653-668 (2)], применяя заявленный способ, возможно сокращение времени определения газосодержания примерно в 3 раза по сравнению с волюмометрическим методом (вместо 7 часов - 2 часа) и в 2-3 раза но сравнению циклометрическим методом (вместо 4-7 часов - 2 часа).

При проведении волюмометрического анализа образец сплавляется с медью и не может использоваться для дальнейших исследований. Преимуществом заявленного способа является возможность проведения неразрушающего контроля. Это является актуальным в том случае, если контакт порошка со средой воздуха и измельчение в дисперсионной среде в процессе пробоподготовки не будет влиять на дальнейшее применение материала, например, для исследования влияния экспериментальных условий термической обработки на фазовый состав материала, исследования микроструктуры (тонкой структуры) порошка методом рентгеновской дифракции и т.п.

Проведена опытная отработка заявляемого способа для определения газосодержания в порошке дейтерида титана состава TiDx (x<1,5). С этой целью на лабораторной вакуумной установке типа Сивертса было получено пять образцов дейтерида титана путем частичного обезгаживания дейтерида титана (фракции менее 100 мкм) при 600°C и последующего охлаждения со скоростью 5°С/мин. Полученные образцы истирали пестиком в агатовой ступке в гексане в течение 5 мин. Проведен экспресс-анализ фазового состава обоих образцов в течение 10 мин каждый. По результатам качественного рентгенофазового анализа во всех образцах идентифицированы α- и δ-фазы, а также γ-фаза с низким содержанием. Количественный рентгенофазовый анализ анализируемых образцов проводили методом Ритвельда. По результатам двух параллельных определений определили массовое содержание α-, δ- и γ-фаз. Впоследствии, используя калибровочные кривые фиг. 2 или 3, определяли газосодержание образцов. Результаты анализа образцов с использованием заявляемого способа представлены в таблице 1.

Для регистрации рентгеновских квантов использовали микростриповый позиционно-чувствительный детектор Mythen 1К [2]. При этом время полного анализа (два параллельных определения) каждого образца составило 2 часа, что примерно в 3 раза меньше по сравнению с волюметрическим методом и в 2-3 раза меньше по сравнению с пикнометрическим. Применение анализа заявленным способом позволило сохранить образцы и использовать их для дальнейшего исследования.

Результаты, представленные в таблице 1, подтверждают достижение технического результата с применением заявляемого способа:

- определено содержание водорода в порошке гидрида титана состава TiHx (x<1,5), полученные результаты согласуются с результатом волюмометрического метода;

- проведен контроль фазового состава в порошке дейтерида титана состава TiHx (x<1,5) путем определения массового содержания α-, δ- и γ-фаз;

- возможность сокращения времени анализа, проведения экспресс-анализа для контроля фазового состава;

- неразрушающий контроль анализируемых образцов нестехиометрического гидрида титана.

Способ определения содержания водорода в порошке нестехиометрического гидрида титана состава TiHx (x<1,5) методом рентгеновской дифракции, заключающийся в определении фазового состава анализируемого образца методом качественного рентгенофазового анализа, определении массового содержания α- и δ-фаз методом количественного рентгенофазового анализа, затем по полученной ранее калибровочной зависимости, используя массовое содержание δ- или α-фазы, определяют содержание водорода в анализируемом образце.



 

Похожие патенты:

Изобретение относится в измерительной техники, а именно к способам неразрушающего контроля объектов в микро- и наноэлектронике. В способе определения температур фазовых переходов в пленках и скрытых слоях многослойных структур нанометрового диапазона толщин нагреваемый образец облучают потоком выходящего из источника рентгеновского излучения и осуществляют регистрацию отраженного от поверхности образца излучения.

Изобретение относится в измерительной техники, а именно к способам неразрушающего контроля объектов в микро- и наноэлектронике. В способе определения температур фазовых переходов в пленках и скрытых слоях многослойных структур нанометрового диапазона толщин нагреваемый образец облучают потоком выходящего из источника рентгеновского излучения и осуществляют регистрацию отраженного от поверхности образца излучения.

Использование: для исследования электрохимических систем методом нейтронного и рентгеновского рассеяния. Сущность изобретения заключается в том, что электрохимическая ячейка для исследований методами нейтронного и рентгеновского рассеяния содержит корпус, состоящий из двух частей, выполненных с возможностью соединения между собой, ванночку для заполнения жидким электролитом, выполненную с возможностью размещения в одной из частей корпуса, вспомогательный электрод, выполненный в виде пластины и помещенный в ванночку, прижимную рамку, обеспечивающую закрепление вспомогательного электрода в ванночке через уплотнительный элемент, монокристаллическую пластину с металлическим покрытием, представляющим собой рабочий электрод, при этом монокристаллическая пластина зафиксирована со стороны внутренней поверхности в другой части корпуса с обеспечением герметизации ванночки.

Использование: для рентгенофазового анализа нанофаз в алюминиевых сплавах. Сущность изобретения заключается в том, что из алюминиевого сплава изготавливают испытуемую фольгу, которую подвергают рентгеновскому излучению, и регистрируют рентгенограмму, по которой идентифицируют и количественно определяют содержащиеся в испытуемой фольге нанофазы, при этом регистрацию рентгенограммы проводят в режиме на просвет с использованием параллельного пучка, по которой определяют пики нанофаз и по ним идентифицируют и количественно определяют содержащиеся в испытуемой фольге нанофазы с объемной долей менее 1%.

Использование: для обследования объекта на основе технологии когерентного рассеяния рентгеновских лучей с целью определения, включает ли в себя обследуемый объект взрывчатые вещества, опасные предметы или подобное.

Группа изобретений относится к медицинской технике, а именно к средствам рентгеновской визуализации для дифференциальной фазово-контрастной визуализации. Система включает дифференциальную фазово-контрастную установку с источником рентгеновского излучения и детектором, компоновку решеток, содержащую решетку источника, фазовую решетку и решетку анализатора, в которой решетка источника расположена между источником рентгеновского излучения и фазовой решеткой, а решетка анализатора расположена между фазовой решеткой и детектором, и компоновку передвижения для относительного передвижения между исследуемым объектом и по меньшей мере одной из решеток, блок обработки и компоновку перемещения решетки источника.

Использование: для сортировки алмазосодержащего материала. Сущность изобретения заключается в том, что в качестве алмазосодержащего материала сортировке подвергают поликристаллические алмазы типа «карбонадо», при этом образцы поликристаллических алмазов со стороны, противоположной катализатору, сошлифовывают слоем не менее 0.2 мм и определяют количество графита на сошлифованной поверхности количественным рентгенофазовым анализом, например дифрактометром, после этого проводят сортировку образцов на группы с содержанием графита 0,7-2,2; 2,3-4,0 и 4,1-5,5 мас.%, причем каждую группу используют для изготовления определенного инструмента.

Использование: для неразрушающего рентгеноструктурного контроля деталей газотурбинного двигателя. Сущность изобретения заключается в том, что осуществляют снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Kβ, определение параметра, зависящего от наработки детали, при этом при снятии рентгенограммы с контролируемой детали вычисляется интегрированный рентгеноструктурный параметр Δ, причем в качестве параметра, зависящего от наработки детали, используют параметр остаточного ресурса Рост, определяемый по заданной зависимости.

Изобретение относится к медицинской технике, а именно к рентгенографическим средствам формирования изображения методом фазового контраста. Система содержит рентгеновский источник, детектор с множеством детектирующих полосок, расположенных в первом направлении детектора, при этом каждая детектирующая полоска содержит множество пикселей, расположенных во втором направлении детектора, фазовую дифракционную решетку, множество дифракционных решеток анализаторов, содержащих щели.

Изобретение относится к аналитической химии и может быть использовано для определения происхождения пищевого этилового спирта. Cущность способа заключается в том, что используют детекторное устройство типа «электронный нос», матрицу которого формируют из 8 сенсоров на основе пьезокварцевых резонаторов объёмных акустических волн с базовой частотой колебаний 10,0 МГц с разнохарактерными пленочными сорбентами на электродах, для стабилизации покрытий для нехроматографических фаз применяют подложку из углеродных нанотрубок, покрытия массива селективные: к спиртам – полиэтиленгликоль адипинат, ПЭГА; к высшим спиртам, кетонам, эфирам - полиэтиленгликоль себацинат и полиэтиленгликоль ПЭГ-2000; к сложным эфирам – полиэтиленгликоль фталат, ПЭГФ; к серосодержащим соединениям, эфирам – Тритон Х-100, ТХ-100; к кислотам, воде, спиртам – дициклогексан-18-6,краун-эфир ( ДЦГ18К6/УНТ); к фенольным и другим ароматическим соединениям – триоктилфосфиноксид (ТОФО/УНТ); к кетонам – пчелиный клей (ПчК).

Использование: для определения содержания водорода в порошке нестехиометрического гидрида титана. Сущность изобретения заключается в том, что определение содержания водорода в порошке нестехиометрического гидрида титана состава TiHx методом рентгеновской дифракции заключается в определении фазового состава анализируемого образца методом качественного рентгенофазового анализа, а также в определении массового содержания α- и δ-фаз методом количественного рентгенофазового анализа, после чего по полученной ранее калибровочной зависимости, используя массовое содержание δ- или α-фазы, определяют содержание водорода в анализируемом образце. Технический результат: обеспечение возможности определения содержания водорода в порошке гидрида титана состава TiHx и контроля фазового состава в порошке гидрида титана состава TiHx, а также обеспечение возможности сокращения времени анализа и проведения неразрушающего контроля анализируемых образцов нестехиометрического гидрида титана. 3 ил., 1 табл.

Наверх