Сверхпрочная высокомарганцевая сталь, полученная за счет комбинирования механизмов упрочнения

Изобретение относится к области материалов с ультрамелкозернистой (УМЗ) структурой, а именно к сталям, которые могут быть использованы в автомобильной промышленности, атомной энергетике, при разработке микроэлектромеханических систем. Ультрамелкозернистая высокомарганцевая сталь обладает пределом текучести более 2 ГПа при относительном удлинении не менее 5%. Сталь содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес.%, марганец более 15 вес.% и алюминий не более 2 вес.%, остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нм, а на границах зерен присутствуют зернограничные сегрегации атомов (С, Mn). Ультрамелкозернистая высокомарганцевая сталь обладает повышенными прочностными свойствами за счет комбинирования механизмов упрочнения. 5 ил., 1 табл.

 

Изобретение относится к области материалов с ультрамелкозернистой (УМЗ) структурой и повышенными механическими свойствами, конкретно к сталям, которые могут быть использованы во многих отраслях промышленности, в частности автомобильной, в атомной энергетике, при разработке микроэлектромеханических систем.

Известно, что в установлении свойств конкретного материала, таких как прочность, пластичность, усталость, стойкость к коррозии, ключевую роль играет микроструктура, которая в зависимости от способа обработки может иметь различные фазовый состав, размер и форму зерен, разориентацию их границ, плотность дислокаций и других дефектов кристаллической решетки и др. [Штремель М.А. Прочность сплавов. М.: Металлургия, 1982. Ч. 1: Дефекты решетки. 280 с.; Штремель М.А. Прочность сплавов. 4.2. Деформация. М., МИСиС, 1997, 527 с.]. Формирование ультрамелкозернистых структур, содержащих преимущественно большеугловые границы, позволяет достичь уникального сочетания прочности, пластичности, усталостной долговечности в металлах и сплавах [Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.].

Известны статьи, в которых опубликованы результаты исследований структуры TWIP стали в образцах, подвергшихся интенсивной пластической деформации кручением под высоким давлением. Так, в статье «Mariana S. Matoso, Roberto В. Figueiredo, Megumi Kawasaki, Dagoberto B. Santosa and Terence G. Langdond. Processing a twinning-induced plasticity steel by high-pressure torsion // Scripta Materialia 67 (2012) 649-652» показано, что структура характеризуется выраженным двойникованием на ранних стадиях деформации, присутствует мартенсит. В статье «Х.Н. An, Q.Y. Lin, G. Sha, M.X. Huang, S.P. Ringer, Y.T, Zhu, X.Z. Liao. Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion // Acta Materialia 109 (2016) 300e313» показана микроструктурная эволюция и измельчение зерна стали в процессе деформации.

Известна ультрамелкозернистая двухфазная сталь (CN 102618802, МПК C21D 1/26, C21D 8/02, опубл. 01.08.2012 г.), имеющая химический состав в массовых процентах: (13,5~14,5)% Сг, (6,1~6,9)% Ni, (2,3~2,7)% Mn, (0,33~0,37)% Si, (0,60~0,90)% меди, (0,01-0,03)% С, (0,021~0,025)% В, (0,60~0,90)% Mo, Р<0,02%, S<0,04%, остальное - Fe, с ультрамелкозернистой микроструктурой, состоящей из распределенных в случайной ориентации зерен, диаметр зерен 500~2000 нм, микроструктура каждого зерна характеризуется наличием аустенита и мартенсита, предел текучести при комнатной температуре составляет 1100~1600 МПа, прочность на разрыв 1200~1850 МПа, удлинение от 10 до 20%.

В известных аналогах не достигаются высокие показатели прочности стали.

Задачей изобретения является разработка ультрамелкозернистой высокомарганцевой стали, обладающей повышенными прочностными свойствами за счет комбинирования механизмов упрочнения.

Технический результат - повышение прочности (по сравнению с крупнозернистыми аналогами и сталями, полученными стандартными термическими обработками) при пределе текучести более 2 ГПа и относительном удлинении не менее 5%.

Поставленная задача решается тем, что ультрамелкозернистая высокомарганцевая сталь, обладающая пределом текучести более 2 ГПа при относительном удлинении не менее 5%, содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес.% и марганец более 15 вес.%, алюминий не более 2 вес.%, остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм, с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нанометров, а на границах зерен присутствуют зернограничные сегрегации атомов (С, Mn).

Технический результат достигается благодаря следующему.

Повышение прочности стали обусловлено, во-первых, очень маленьким размером зерна (менее 200 нм) в структуре материала, что обеспечивает увеличение напряжения течения при пластической деформации согласно известному соотношению Холла-Петча [Большие пластические деформации и разрушение металлов. Рыбин В.В. М.: Металлургия, 1986, 224 с.]. Значительное повышение прочности достигается также тем, что именно большеугловые границы зерен в сравнении с малоугловыми и специальными границами обеспечивают наибольший вклад в упрочнение [Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.]. Полученная наноструктура стали обеспечивает высокий уровень прочностных свойств также за счет наличия нанодвойников толщиной до 15 нанометров и зернограничных сегрегации атомов (С, Mn) на границах зерен. Это обусловлено тем, что дополнительные двойниковые границы, а также наличие неоднородных сегрегации на границах зерен выступают препятствием при движении дислокаций, поэтому необходимо дополнительное напряжение для генерации и движения дислокаций, что повышает предел текучести, соответственно, прочности.

Предложенное комбинирование механизмов упрочнения, а именно измельчение зерна до размеров менее 200 нм, наличие нанодвойников и зернограничных сегрегаций примесных атомов в структуре обеспечивает повышенную механическую прочность ултрамелкозернистой высокомарганцевой стали.

Описанные выше структурные изменения материала в процессе обработки достигаются особенностями получения стали при указанных температурно-скоростных режимах.

Сущность изобретения поясняют изображения микроструктуры заявляемой сверхпрочной высокомарганцевой стали после интенсивной пластической деформации кручением при 300°С, где:

на фиг. 1, 2 - светлопольное изображение микроструктуры стали, показано, что размер зерна составляет менее 200 нм, зерна равноосные, структура однородна;

на фиг. 2, кроме того, показано наличие двойников в структуре;

на фиг. 3 - темнопольное изображение микроструктуры стали, показан размер зерна менее 200 нм, зерна равноосные, структура однородна;

на фиг. 4 в темнопольном изображении показано наличие двойников в структуре;

на фиг. 5 показано изображение, полученное методом атомно-зондовой томографии, представляющее собой 3D реконструкцию распределения атомов в ультрамелкозернистой высокомарганцевой стали, видны зернограничные сегрегации примесных атомов (С, Mn), отмеченные цифрами #1-4, имеющие более насыщенный цвет.

Ультамелкозернистую высокомарганцевую сталь получают следующим образом.

В качестве заготовки используют диск из высокомарганцевой стали 0.6С-18Mn-2А1 диаметром 10 мм и толщиной 2,5 мм. Осуществляют обработку интенсивной пластической деформацией кручением на бойках Бриджмена при температуре 300°С, гидростатическом давлении 6 ГПа, со скоростью 0,2 об/мин, суммарная степень деформации е=6,5. Деформацию осуществляют сначала в канавке глубиной 0,9 мм в количестве 9 оборотов, при последнем (десятом) обороте используют канавку 0,6 мм. Характеристики полученной стали и особенности структуры отражены в таблице.

Из таблицы видно, что полученная сталь обладает повышенными характеристиками прочности при сохранении достаточной пластичности. В результате формирования ультрамелкозернистой структуры с размером аустенитных зерен 45 нм внутри зерен наблюдались двойники толщиной 3 нм, а границы зерен были декорированы сегрегациями углерода и марганца (см. фото). В результате формирования подобной структуры за счет комбинации нескольких упрочняющих механизмов предел прочности возрос до 2120 МПа.

Таким образом, разработанная ультрамелкозернистая высокомарганцевая сталь обладает повышенными прочностными свойствами за счет комбинирования механизмов упрочнения.

Ультрамелкозернистая высокомарганцевая сталь, обладающая пределом текучести более 2 ГПа при относительном удлинении не менее 5%, отличающаяся тем, что она содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес.%, марганец более 15 вес.% и алюминий не более 2 вес.%, остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нм, а на границах зерен присутствуют зернограничные сегрегации атомов (С, Mn).



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к сварному соединению. Сварное соединение, полученное путем сварки в несколько проходов основного материала с использованием сварочного материала, характеризующееся тем, что сварочный материал имеет химический состав, в мас.%: C от 0,01 до 0,15, Si до 4,0, Mn от 0,01 до 3,5, P до 0,03, S до 0,015, Cr от 15,0 до 35,0, Ni от 40,0 до 70,0, Cu от 0,01 до 4,0, N от 0,005 до 0,1, O до 0,03, железо и примеси - остальное, а основной материал, имеющий химический состав, в мас.%: C от 0,03 до 0,075, Si от 0,6 до 2,0, Mn от 0,05 до 2,5, P до 0,04, S до 0,015, Cr больше 16,0 и менее 23,0, Ni от 20,0 до менее 30,0, Cu от 0,5 до 10,0, Mo до менее 1, Al до 0,15, N от 0,005 до 0,20, O до 0,02, железо и примеси – остальное.

Изобретение относится к области металлургии, а именно к получению слитков из конструкционной криогенной аустенитной высокопрочной коррозионно-стойкой свариваемой стали, для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке и хранении сжиженных газов.

Изобретение относится к области металлургии, в частности к составам сплавов на основе железа, которые могут быть использованы для изготовления деталей тепловых агрегатов, печей.

Сталь // 2657392
Изобретение относится к стали, которая может быть использована в машиностроении. Сталь содержит 0,7-0,9 мас.% углерода, 0,15-0,35 мас.% кремния, 1,0-1,5 мас.% марганца, 0,5-0,8 мас.% хрома, 0,2-0,25 мас.% молибдена, 12,8-13,6 мас.% никеля, 2,4-2,6 мас.% меди, 2,2-2,6 мас.% тантала, 0,1-0,15 мас.% ниобия, 0,08-0,12 мас.% бора, 0,35-0,45 мас.% ванадия, железо - остальное.

Изобретение относится к области металлургии, а именно к износостойким литейным сталям, и может быть использовано для деталей, работающих в условиях повышенного ударного нагружения с неравномерной цикличностью, а также работающих в условиях интенсивного абразивного воздействия.

Изобретение относится к области черной металлургии, а именно к производству высокопрочного высокотвердого листового проката для противопульной защиты корпуса транспортных средств.

Изобретение относится к области черной металлургии, в частности к составам сплавов на основе железа, которые могут быть использованы для изготовления сварочной проволоки.

Сталь // 2650945
Изобретение относится к области черной металлургии, а именно к составам сталей, используемых в машиностроении. Сталь содержит, мас.%: углерод 1,0-1,1, кремний 0,3-0,5, марганец 3,5-3,7, хром 0,2-0,3, медь 0,8-1,2, никель 0,8-1,4, кобальт 0,2-0,3, ванадий 0,2-0,3, ниобий 0,2-0,3, празеодим 2,2-2,4, вольфрам 0,2-0,3, бор 0,05-0,1, железо - остальное.

Изобретение относится к области металлургии, а именно к двухфазной ферритно-мартенситной нержавеющей стали с содержанием фазы мартенсита 5 - 95 об.%, используемой в качестве листового материала для изготовления корпусов товарных вагонов, эксплуатирующихся в местности с холодным климатом.

Изобретение относится к сварке, а именно к изготовлению сварного изделия, и может быть использовано при изготовлении корпусов ядерных реакторов. Способ изготовления сварного изделия включает нанесение сварочного материала на базовый стальной материал и проведение наплавки.

Изобретение относится к области черной металлургии, в частности к составам сплавов на основе железа, используемых для изготовления деталей тепловых агрегатов. Сплав на основе железа содержит, мас.

Сталь // 2650943
Изобретение относится к области черной металлургии, а именно к составам сталей, используемых для изготовления инструмента горячего деформирования и деталей тепловых агрегатов.

Сталь // 2650939
Изобретение относится к области черной металлургии, а именно к составам сталей, используемых в машиностроении. Сталь содержит, мас.%: углерод 0,9-1,1; кремний 0,05-0,15; марганец 1,1-1,6; хром 0,5-0,9; титан 0,3-0,5; церий 0,05-0,15; эрбий 0,8-1,2; рений 3,0-3,4; молибден 0,25-0,35; бор 0,1-0,2; железо - остальное.

Изобретение относится к созданию плакированного алюминием стального листа, используемого для горячего прессования, который имеет превосходные смазывающую способность в горячем состоянии, коррозионную стойкость после нанесения красочного покрытия и пригодность к точечной сварке.

Изобретение относится к области металлургии, а именно к холоднокатаной листовой стали, имеющей наносимое погружением в расплав покрытие, используемой в автомобилестроении.

Сталь // 2647058
Изобретение относится к области черной металлургии, в частности к составам стали. Может использоваться для изготовления изделий, работающих в условиях термоциклирования: деталей котельных установок, судовой арматуры, крекингоустановок.

Сталь // 2639428
Изобретение относится к черной металлургии, в частности к составам сталей. Может использоваться для изготовления деталей двигателей, тепловых агрегатов, труб, металлургического оборудования и других изделий, работающих в окислительной среде при условиях повышенных температур.

Сталь // 2635646
Изобретение относится к области черной металлургии, в частности к составам стали. Может использоваться для изготовления изделий, работающих в условиях термоциклирования.

Сталь // 2635645
Изобретение относится к области черной металлургии, в частности к составам стали. Может быть использовано для изготовления изделий, работающих в условиях термоциклирования.

Изобретение относится к области металлургии, а именно к высокопрочной коррозионно-стойкой плакированной стали, используемой для изготовления сварных конструкций и оборудования, применяемых в нефтеперерабатывающей, нефтехимической, химической, коксохимической и других отраслях промышленности.

Изобретение относится к изменению изгибной жесткости цилиндрических стержневых изделий. Осуществляют формирование остаточных напряжений при осесимметричном пластическом деформировании изделия с помощью деформирующего инструмента с конической рабочей частью.

Изобретение относится к области материалов с ультрамелкозернистой структурой, а именно к сталям, которые могут быть использованы в автомобильной промышленности, атомной энергетике, при разработке микроэлектромеханических систем. Ультрамелкозернистая высокомарганцевая сталь обладает пределом текучести более 2 ГПа при относительном удлинении не менее 5. Сталь содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес., марганец более 15 вес. и алюминий не более 2 вес., остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нм, а на границах зерен присутствуют зернограничные сегрегации атомов. Ультрамелкозернистая высокомарганцевая сталь обладает повышенными прочностными свойствами за счет комбинирования механизмов упрочнения. 5 ил., 1 табл.

Наверх