Ротор многоступенчатой турбины

Изобретение относится к роторам многоступенчатых турбин газотурбинных двигателей авиационного и наземного применения. Ротор многоступенчатой турбины включает первый, средний и последний диски, стянутые с валом центральным стяжным болтом через сферическую шайбу и упругий элемент. Последний диск установлен радиальным кольцевым фланцем на валу, а первый диск выполнен с радиальным фланцем. Упругий элемент внешней поверхностью установлен в Z-образном переднем фланце первого диска и контактирует с ним по торцевой поверхности, внутренней поверхностью установлен на стяжном болте. Упругий элемент зафиксирован относительно переднего фланца диска первой ступени в окружном направлении осевыми штифтами и выполнен с Г-образным кольцевым фланцем с установленным на нем фиксатором стяжного болта в окружном направлении. Ближайшая к ступице первого диска поверхность упругого элемента выполнена плоской. Изобретение позволяет повысить надежность ротора многоступенчатой турбины газотурбинного двигателя путем исключения контакта упругого элемента с полотном или ступицей диска при работе ротора газовой силовой турбины. 2 ил.

 

Изобретение относится к роторам многоступенчатых турбин газотурбинных двигателей авиационного и наземного применения.

Известен ротор газотурбинного двигателя, первый, средний последний диски, в котором зафиксированы в осевом направлении стяжным болтом и опорным фланцем (патент RU 2251010, МПК F02K 3/06, опубл. 20.04.2005).

Недостатком такой конструкции является ее низкая надежность из-за повышенных напряжений в стяжном болте, который может работать на изгиб.

Наиболее близким к заявляемому и принятому за прототип является ротор многоступенчатой турбины газотурбинного двигателя, в котором диски зафиксированы в осевом направлении стяжным болтом, а между головкой болта и ступицей диска последовательно установлены сферическая шайба и упругий элемент в виде тарельчатой пружины (патент RU 2230195, МПК F02K 3/06, опубл. 20.04.2005).

Недостатком известной конструкции, принятой за прототип, является ее низкая надежность из-за контакта упругого элемента со ступицей или полотном диска, что может привести к повреждению диска в зоне его максимальных напряжений и к дальнейшей его поломке.

Техническая задача, на решение которой направлено заявляемое изобретение, заключается в повышении надежности ротора многоступенчатой турбины газотурбинного двигателя путем исключения контакта упругого элемента с полотном или ступицей диска при работе ротора газовой силовой турбины.

Технический результат достигается тем, что в роторе многоступенчатой турбины, включающем первый, средний и последний диски, стянутые с валом центральным стяжным болтом через сферическую шайбу и упругий элемент, при этом последний диск установлен радиальным кольцевым фланцем на валу, а первый диск выполнен с радиальным фланцем, согласно изобретению упругий элемент внешней поверхностью установлен в Z-образном переднем фланце первого диска и контактирует с ним по торцевой поверхности, внутренней поверхностью установлен на стяжном болте, зафиксирован относительно переднего фланца диска первой ступени в окружном направлении осевыми штифтами и выполнен с Г-образным кольцевым фланцем с установленным на нем фиксатором стяжного болта в окружном направлении, причем ближайшая к ступице первого диска поверхность упругого элемента выполнена плоской.

В предлагаемом изобретении, в отличии от прототипа, установка упругого элемента внешней поверхностью в Z-образном переднем фланце первого диске с контактом с фланцем по торцевой поверхности повышает надежность газотурбинного двигателя, так как исключает контакт наиболее напряженных ступицы и полотна первого диска турбины с упругим элементом, а также обеспечивает соосность упругого элемента относительно дисков турбины.

Установка упругого элемента внутренней поверхностью на стяжном болте повышает надежность ротора газовой силовой свободной турбины, так как исключает радиальное смещение стяжного болта относительно дисков.

Фиксация упругого элемента в окружном направлении осевыми штифтами относительно переднего фланца первого диска исключает перемещение упругого элемента в окружном направлении, что могло бы привести к дисбалансу ротора газовой силовой турбины.

Выполнение упругого элемента с Г-образным кольцевым фланцем, с установкой на фланце фиксатора стяжного болта в окружном направлении, исключает ослабление осевой фиксации дисков ротора вследствие окружного перемещения стяжного болта относительно дисков.

Выполнение ближайшей к ступице первого диска поверхности упругого элемента плоской исключает катастрофическое повреждение ступицы диска в случае ее соприкосновения с упругим элементом, например, при повышенной осевой температурной деформации дисков турбины.

На фиг. 1 показан продольный разрез ротора многоступенчатой турбины;

На фиг. 2 показан элемент I в увеличенном виде.

Ротор многоступенчатой турбины 1 состоит из первого 2, среднего 3 и последнего 4 дисков, консольно установленных на валу 5 ротора 1 относительно подшипника 6 и стянутых центральным стяжным болтом 7 через сферическую шайбу 8 и упругий элемент 9. Последний диск 4 установлен радиальным кольцевым фланцем 10 на валу 5, закреплен на нем болтовым соединением 11 и направлен к подшипнику 6.

Упругий элемент 9 внешней поверхностью 12 установлен в Z-образном переднем фланце 13 первого диска 2 и контактирует с торцевой поверхностью 14 Z-образного переднего фланца 13, а внутренней поверхностью 15 упругий элемент 9 контактирует со стержнем 16 стяжного болта 7. Упругий элемент 9 зафиксирован в окружном направлении относительно Z-образного переднего фланца 13 первого диска 2 осевыми штифтами 17 и выполнен с Г-образным кольцевым фланцем 18 с установленным на нем фиксатором 19 стяжного болта 7 в окружном направлении.

Ближайшая к ступице 20 первого диска 2 поверхность 21 упругого элемента 9 выполнена плоской, что минимизирует повреждение ступицы 20 в случае касания упругим элементом ступицы, например, в случае чрезмерной осевой деформации упругого элемента.

Работает данное устройство следующим образом.

При работе ротора многоступенчатой турбины 1 диски первый 2, средний 3 и последний 4 имеют более высокие температуры по сравнению с центральным стяжным болтом 7, что приводит к увеличенной осевой температурной деформации дисков 2, 3 и 4 по сравнению с менее нагретым стяжным болтом 7, что могло бы привести к его поломке. Однако этого не происходит, так как упругий элемент 9 за счет своей упругой деформации парирует разницу осевых температурных деформаций первого, среднего, последнего дисков 2, 3 и 4 и стяжного болта 7.

В осевом и в радиальном направлениях упругий элемент 9 соприкасается только с Z-образным передним фланцем 13 первого диска 2, в зоне минимальных напряжений диска 2, что повышает надежность ротора многоступенчатой турбины 1.

Таким образом, выполнение предлагаемого изобретения с вышеуказанными отличительными признаками в совокупности с известными признаками заявляемого изобретения позволяет повысить надежность ротора многоступенчатой турбины газотурбинного двигателя путем исключения контакта упругого элемента с полотном или ступицей диска при работе ротора газовой силовой турбины.

Ротор многоступенчатой турбины, включающий первый, средний и последний диски, стянутые с валом центральным стяжным болтом через сферическую шайбу и упругий элемент, при этом последний диск установлен радиальным кольцевым фланцем на валу, а первый диск выполнен с радиальным фланцем, отличающийся тем, что упругий элемент внешней поверхностью установлен в Z-образном переднем фланце первого диска и контактирует с ним по торцевой поверхности, внутренней поверхностью установлен на стяжном болте, зафиксирован относительно переднего фланца диска первой ступени в окружном направлении осевыми штифтами и выполнен с Г-образным кольцевым фланцем с установленным на нем фиксатором стяжного болта в окружном направлении, причем ближайшая к ступице первого диска поверхность упругого элемента выполнена плоской.



 

Похожие патенты:

Изобретение относится к области турбомашиностроения, преимущественно к авиадвигателестроению, а именно к штифтовым соединениям частей вала турбины низкого давления (ТНД) газотурбинного двигателя.

Теплофикационная парогазовая установка с паротурбинным приводом компрессора относится к энергетике и может быть применена для тепло- и электроснабжения потребителей в новых микрорайонах городов.

Изобретение относится к управлению авиационным двигателем. Способ управления двухроторным газотурбинным двигателем самолета при останове заключается в уменьшении частоты вращения вала ротора высокого давления и вала ротора низкого давления.

Газотурбинный двигатель содержит редуктор, соединенный с возможностью вращения с приводным валом вентилятора, и компрессор высокого давления. Газотурбинный двигатель выполнен с возможностью поддержания температуры на выходе компрессора высокого давления в диапазоне от 621 до 732°C при взлете, а отношение скоростей истечения, определяемое как отношение скорости истечения вентиляторной струи к скорости истечения основной струи, находится в диапазоне от 0,75 до 0,90 при полете с крейсерской мощностью двигателя на высоте около 10668 метров (35000 футов) со скоростью около 0,80 числа Маха.

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов низкого давления (РНД) модуля газогенератора и вал ротора модуля силовой турбины.

Опорный узел редукторной системы турбомашины содержит опору, имеющую более податливую часть и менее податливую часть. Менее податливая часть содержит стопор, ограничивающий осевое перемещение редукторной системы в турбомашине.

Система передачи мощности для турбомашины содержит передаточный вал, связанный с валом двигателя с помощью средств соединения и приводящий в действие оборудование или вспомогательные средства.

Изобретение относится к энергетике. Газотурбинная система, содержащая газовую турбину (23), первую нагрузку (71) и вторую нагрузку (72), приводимые в действие с помощью газовой турбины.

Газотурбинный двигатель содержит гибкую опору для зубчатой передачи привода вентилятора. Первая турбинная секция имеет первую выходную площадь и способна вращаться с первой скоростью.

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам крутящего момента от турбины высокого давления ЦКП и кинематически соединенные с ней редукторы приводов КДА и КСА.

Лопатка вентилятора газотурбинного двигателя состоит из основания, металлической оболочки, образующей корытце, спинку и входную кромку, и несущих силовых элементов, установленных в полости внутри металлической оболочки и демпфирующего материала в виде панелей с сотовыми ячейками.

Способ балансировки ротора компрессора в сборе, включающий: переднюю сварную конструкцию и заднюю сварную конструкцию; предварительную балансировку задней сварной конструкции ротора компрессора в сборе с дисками компрессора до установки по окружности дисков ротора компрессора его лопаток.

Изобретение относится к авиационному двигателестроению, в частности к осевым компрессорам авиационных газотурбинных двигателей. Рабочее колесо осевого компрессора газотурбинного двигателя содержит диск с конусообразной наружной поверхностью, ориентированной меньшим основанием к входному торцу рабочего колеса, рабочие лопатки с хвостовиками, размещенными в выполненных на наружной поверхности диска пазах с образованием радиального зазора между нижней поверхностью хвостовика и внутренней поверхностью паза, фиксирующие вставки, размещенные в радиальном зазоре и выполненные по форме этого зазора из материала более пластичного, чем материал, из которого изготовлены лопатки и диск, и ограничители перемещения фиксирующих вставок вдоль паза, причем пазы на наружной поверхности диска ориентированы под острым углом к диаметральной плоскости продольного сечения диска и под острым углом к поверхности выходного торца рабочего колеса, фиксирующая вставка имеет по меньшей мере один выступ, а хвостовик - по меньшей мере одну соответствующую выступу по форме впадину, расположенные на взаимно контактирующих поверхностях.

Лопатка ротора газотурбинного двигателя включает на своей концевой части бандажную полку, содержащую площадку с первым бортиком со стороны корытца и вторым бортиком со стороны спинки и уплотнительный гребешок.

Компонент ротора для узла ротора машины, приводимой в действие энергией текучей среды, выполнен из материала, подверженного коррозии и/или окислению, и расположен концентрично оси вращения узла ротора.

Лопатка турбины содержит рабочую часть, ромбовидный или Т-образный хвостовик, расположенный в периферийном пазу, и закрывающую пластину между ними. Закрывающая пластина имеет переднюю поверхность, заднюю поверхность, первую поверхность прилегания и расположенную параллельно ей вторую поверхность прилегания.

Изобретение относится к области газотурбиностроения, а именно к охлаждаемым рабочим лопаткам турбин, применяемым в авиационных газотурбинных двигателях, а также в стационарных газотурбинных установках.

Монтажное устройство для монтажа направляющей лопатки в лопаточном пазу турбины включает зажимной блок и нажимной блок. Зажимной блок выполнен с возможностью создания в лопаточном пазу силового замыкания в окружном направлении, причем окружным направлением в рабочем положении монтажного устройства является направление перпендикулярно оси вращения турбины, проходящее на постоянном расстоянии вокруг оси вращения.

Способ изменения начального контура аэродинамического тракта (2 содержит этап, заключающийся в том, что прикрепляют деталь (1) изменения аэродинамического тракта (2) на аэродинамическом тракте (2).

Роторное колесо для ротора газовой турбины имеет первую сторону, имеющую изогнутые лопатки, разделенные изогнутыми канавками, и вторую сторону, имеющую радиальные лопатки, разделенные радиальными канавками.

Способ балансировки ротора компрессора в сборе, включающий: переднюю сварную конструкцию и заднюю сварную конструкцию; предварительную балансировку задней сварной конструкции ротора компрессора в сборе с дисками компрессора до установки по окружности дисков ротора компрессора его лопаток.

Изобретение относится к роторам многоступенчатых турбин газотурбинных двигателей авиационного и наземного применения. Ротор многоступенчатой турбины включает первый, средний и последний диски, стянутые с валом центральным стяжным болтом через сферическую шайбу и упругий элемент. Последний диск установлен радиальным кольцевым фланцем на валу, а первый диск выполнен с радиальным фланцем. Упругий элемент внешней поверхностью установлен в Z-образном переднем фланце первого диска и контактирует с ним по торцевой поверхности, внутренней поверхностью установлен на стяжном болте. Упругий элемент зафиксирован относительно переднего фланца диска первой ступени в окружном направлении осевыми штифтами и выполнен с Г-образным кольцевым фланцем с установленным на нем фиксатором стяжного болта в окружном направлении. Ближайшая к ступице первого диска поверхность упругого элемента выполнена плоской. Изобретение позволяет повысить надежность ротора многоступенчатой турбины газотурбинного двигателя путем исключения контакта упругого элемента с полотном или ступицей диска при работе ротора газовой силовой турбины. 2 ил.

Наверх