Способ для сжижения обогащенной углеводородом фракции

Описан способ сжижения обогащенной углеводородом фракции, в частности природного газа, за счет косвенного теплообмена с холодильной смесью контура циркуляции холодильной смеси. Холодильная смесь сжимается, разделяется на жидкую фазу, которая обогащена высококипящими компонентами (HMR) холодильной смеси, и газовую фазу, которая обогащена низкокипящими компонентами (LMR) холодильной смеси, и эти фазы смешиваются перед косвенным теплообменом. В соответствии с изобретением косвенный теплообмен осуществляется в по меньшей мере двух теплообменниках (Е3, Е4), причем первый теплообменник (Е4) служит для предварительного охлаждения, а второй теплообменник (Е3) служит для сжижения обогащенной углеводородом фракции. К первому теплообменнику подается холодильная смесь, которая содержит от 5 до 50% жидкой фазы (3, 15), которая обогащена высококипящими компонентами (HMR) холодильной смеси, и таким образом смешивается с газовой фазой (6, 14), которая обогащена низкокипящими компонентами (LMR) холодильной смеси, что устанавливается отношение смеси HMR/LMR между 1, 2 и 10. Технический результат – повышение точности регулирования температуры. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к способу сжижения обогащенной углеводородом фракции, в частности природного газа, за счет косвенного теплообмена с холодильной смесью контура циркуляции холодильной смеси, причем холодильная смесь сжимается, разделяется на жидкую фазу, которая обогащена высококипящими компонентами (HMR - тяжелый хладагент смеси) холодильной смеси, и газовую фазу, которая обогащена низкокипящими компонентами (LMR - легкий хладагент смеси) холодильной смеси, и эти фазы смешиваются перед косвенным теплообменом.

Способы для сжижения обогащенной углеводородом фракции или газовой смеси, в частности природного газа, используют, помимо прочего, замкнутые контуры циркуляции холодильной смеси, в которых многокомпонентный хладагент при повышенным вблизи температуры окружающей среды давлением по меньшей мере частично конденсируется, а при низком давлении при температуре ниже температуры окружающей среды испаряется с обеспечением холодильной мощности. При простом способе используется только один контур циркуляции холодильной смеси, в котором фракции охладителя, возникающие во время сжатия, перед косвенным теплообменом смешиваются с подлежащей сжижению обогащенной углеводородом фракцией и совместно используются в теплообменнике.

На основе представленного на фиг. 1 выполнения способа далее более подробно поясняется типовой способ для охлаждения и сжижения обогащенной углеводородом фракции, как он раскрыт, например, в патентной заявке Германии 102011010633.

По линии 100 подлежащая охлаждению и сжижению обогащенная углеводородом фракция, которая представляет собой, например, природный газ, подается на теплообменник Е3'. В нем загруженная фракция предварительно охлаждается под действием контура циркуляции холодильной смеси, который будет описан далее, и по линии 101 подается на разделительный блок Т. Этот разделительный блок Т, представленный только как «черный ящик», без детализации, служит, например, для отделения азота и/или высших углеводородов из подлежащей сжижению загруженной фракции 100/101. Реализованный в разделительном блоке Т процесс отделения определяет температуру, по меньшей мере до которой загруженная фракция 100/101 должна охлаждаться в теплообменнике Е3'. По линии 104 отделенный(е) из загруженной фракции компонент(ы) отводятся из разделительного блока Т, в то время как остающаяся, подлежащая сжижению загруженная фракция по линии 102 вновь подается на теплообменник Е3' и в нем вновь охлаждается, сжижается и, при необходимости, переохлаждается. Обработанная таким образом загруженная фракция 103 затем подается для ее дальнейшего применения или в накопительный резервуар.

Контур циркуляции холодильной смеси, требуемый для охлаждения и сжижения обогащенной углеводородом загруженной фракции 100/102, включает в себя по меньшей мере двухступенчатый компрессорный блок С, сепаратор D1, включенный перед компрессорным блоком С, а также два сепаратора D2 и D3, включенных после компрессорных ступеней. Кроме того, предусмотрены два дополнительных охладителя Е1 и Е2, которые служат для отвода тепла сжатия и частичной конденсации холодильной смеси, и насос или насосный блок Р.

Испаренная в теплообменнике Е3' под действием подлежащей охлаждению и сжижению загруженной фракции 100/102 холодильная смесь подается по линии 1 к упомянутому сепаратору D1. Выходящая из головки этого сепаратора по линии 1' газовая фаза подается на первую ступень компрессора компрессорного блока С и сжимается до желательного промежуточного давления. По линии 2 сжатая холодильная смесь после прохождения через дополнительный охладитель Е1 подается на сепаратор D2. Из его отстойника по линии 3 жидкая фаза, которая обогащена высококипящими компонентами хладагента (HMR), отводится и посредством насоса или насосного блока Р нагнетается до высокого давления газовой фазы холодильной смеси, как будет описано ниже.

Отведенная из сепаратора D2 по линии 4 газовая фаза подается во вторую ступень конденсатора С и сжимается до желательного окончательного давления контура циркуляции холодильной смеси. По линии 5 сжатая холодильная смесь после прохождения через дополнительный охладитель Е2 подается на сепаратор D3. Возникающая в отстойнике сепаратора D3 жидкая фракция 7 через регулирующий клапан V1 возвращается в контур циркуляции перед входом сепаратора D2. На головке сепаратора D3 по линии 6 газовая фаза, которая обогащена низкокипящими компонентами холодильной смеси (LMR), отводится и после смешивания с вышеописанной жидкой фазой 3 по линии 8 подается на теплообменник Е3'. Жидкая фаза 3, а также газовая фаза 6 перед теплообменником или непосредственно в начале теплообмена, происходящего в теплообменнике Е3', объединяются и подаются как двухфазный поток. Холодильная смесь в теплообменнике Е3' охлаждается и полностью сжижается. На холодном конце теплообменника Е3' холодильная смесь 9 в клапане V2 расширяется с обеспечением холодильной мощности и затем при повторном прохождении через теплообменник Е3' полностью испаряется.

Однако посредством вышеописанной реализации способа невозможно целенаправленное воздействие на температурный профиль в теплообменнике Е3'. Предоставленные в распоряжение изменяемые параметры контура циркуляции холодильной смеси, такие как профиль давления, массовый поток и состав, используются для регулирования производительности установки и температуры загруженной фракции на холодном конце теплообменнике Е3', а также для оптимизации потребления энергии. Если теперь при сжижении газа потребуется любая промежуточная температура в теплообменнике Е3', например для предотвращения выпадения твердого вещества в загруженном газе или для регулирования требуемого разделения материалов, например вышеописанного отделения азота или высших углеводородов, то ее невозможно регулировать независимо от нагрузки и температуры подлежащей сжижению фракции на холодном конце теплообменника Е3'.

Задачей настоящего изобретения является предложить способ для сжижения обогащенной углеводородом фракции, в частности природного газа, который позволяет, наряду с температурой на холодном конце теплообменника, применяемого для косвенного теплообмена, достаточно точно регулировать другую температуру. Под этим следует понимать регулирование на по меньшей мере 3°С, предпочтительно на по меньшей мере 1°С.

Для решения этой задачи предложен способ для сжижения обогащенной углеводородом фракции, в частности природного газа, который отличается тем, что

- косвенный теплообмен осуществляется в по меньшей мере двух теплообменниках,

- причем первый теплообменник служит для предварительного охлаждения, а второй теплообменник служит для сжижения обогащенной углеводородом фракции, и

- к первому теплообменнику подается холодильная смесь, которая содержит от 5 до 50% жидкой фазы, которая обогащена высококипящими компонентами (HMR) холодильной смеси, и таким образом перемешивается с газовой фазой, которая обогащена низкокипящими компонентами (LMR) холодильной смеси, что устанавливается отношение смеси HMR/LMR между 1, 2 и 10.

В вышеописанном относящемся к уровню техники способе для сжижения обогащенной углеводородом фракции жидкая, а также газовая фаза холодильной смеси соответственно полностью смешиваются и совместно применяются для охлаждения и сжижения загруженной фракции. В соответствии с изобретением непрямой (косвенный) теплообмен между обогащенной углеводородом фракцией и холодильной смесью осуществляется в по меньшей мере двух теплообменниках, причем первый теплообменник служит для предварительного охлаждения, а второй теплообменник служит для охлаждения и сжижения обогащенной углеводородом фракции. При этом первый теплообменник или теплообменник предварительного охлаждения преимущественно охлаждается жидкой фазой холодильной смеси, а второй теплообменник или ожижитель преимущественно охлаждается газовой фазой холодильной смеси. В соответствии с изобретением к первому теплообменнику подается холодильная смесь, которая содержит от 5 до 50% жидкой фазы, которая обогащена высококипящими компонентами (HMR) холодильной смеси. Эта жидкая фаза таким образом смешивается с газовой фазой, которая обогащена низкокипящими компонентами (LMR) холодильной смеси, что устанавливается отношение смеси HMR/LMR между 1, 2 и 10. Остающиеся составляющие жидкой и газовой фазы применяются для охлаждения второго теплообменника. Применяемая для первого теплообменника холодильная смесь многократно обогащается высококипящими компонентами и в соответствии с этим является высококипящей. Как следствие, холодильная смесь второго теплообменника обогащена низкокипящими компонентами холодильной смеси и в соответствии с этим является низкокипящей.

Холодопроизводительность и температурный профиль обоих теплообменников могут теперь посредством смешиваний и установки количеств соответствующих фракций охладителя таким образом подвергаться влиянию, что температура на холодном конце первого теплообменника - как и температура на холодном конце второго теплообменника - может точно регулироваться на по меньшей мере 3°С, предпочтительно на по меньшей мере 1°С.

Другие предпочтительные выполнения соответствующего изобретению способа сжижения обогащенной углеводородом фракции характеризуются тем, что

- на первый теплообменник подается холодильная смесь, которая имеет от 10 до 30% жидкой фазы, которая обогащена высококипящими компонентами (HMR) холодильной смеси,

- устанавливается отношение смеси HMR/LMR между 2 и 5, и/или

- частичный поток газовой фазы подается в холодильную смесь на холодном конце первого и/или второго теплообменника.

Соответствующий изобретению способ сжижения обогащенной углеводородом фракции, а также другие его предпочтительные выполнения далее поясняются более подробно на основе примера выполнения, представленного на фиг. 2.

Подлежащая охлаждению и сжижению обогащенная углеводородом фракция 200 подается на первый теплообменник или предварительный охладитель Е4. В нем загруженная фракция перед описанным ниже контуром циркуляции холодильной смеси предварительно охлаждается и по линии 201 подается на разделительный блок Т. По линии 204 отделенный или отделенные из загруженной фракции компонент(ы) отводятся из разделительного блока Т, в то время как остающаяся, подлежащая сжижению загруженная фракция по линии 202 подается на второй теплообменник или конденсатор Е3 и в нем далее охлаждается, сжижается и, при необходимости, переохлаждается. Обработанная таким образом загруженная фракция 203 затем подается для ее дальнейшего применения или в накопительный резервуар.

Контур циркуляции холодильной смеси, требуемый для охлаждения и сжижения обогащенной углеводородом загруженной фракции 200/202, соответствует, за исключением распределения газовой и жидкой фазы 6 или 3 на оба теплообменника Е3 и Е4, описанному со ссылкой на фиг. 1 контуру циркуляции холодильной смеси. Поэтому далее будут описываться только отличия от поясненного со ссылкой на фиг. 1 контура циркуляции холодильной смеси.

В соответствии с изобретением отведенная из отстойника сепаратора D2 жидкая фаза 3 посредством регулирующих клапанов V6 и V7 через участки 11 и 15 линии разделяется на теплообменники Е3 и Е4. При этом на теплообменник Е4 подается холодильная смесь, которая содержит от 5 до 50%, предпочтительно от 10 до 30% жидкой фазы, которая обогащена высококипящими компонентами (HMR) холодильной смеси. Распределение отводимой от головки сепаратора D3 газовой фазы 6, которая обогащена низкокипящими компонентами (LMR) холодильной смеси, через участки 10 и 14 линии на теплообменники Е3 и Е4 получается из баланса масс объединенных потоков 12 и 16 холодильной смеси через клапаны V2 и V4.

По участкам 13 и 17 линии частичные потоки газовой фазы 6 могут подаваться в холодильную смесь 12 или 16 на холодном конце первого и/или второго теплообменника Е4 или Е3. Посредством регулирующих клапанов V3 и V5 благодаря этому получается дополнительная возможность контроля температуры на холодном конце теплообменника Е3 и Е4. К тому же посредством обоих клапанов V3 и V5 может устанавливаться минимальная скорость газа, которая способствует стабильному холодному запуску теплообменников Е3 и Е4, при этом предотвращается расслоение газовой и жидкой фазы во время испарения.

1. Способ сжижения обогащенной углеводородом фракции, в частности природного газа, посредством косвенного теплообмена с холодильной смесью контура циркуляции холодильной смеси, причем холодильная смесь сжимается, разделяется на жидкую фазу, которая обогащена высококипящими компонентами (HMR) холодильной смеси, и газовую фазу, которая обогащена низкокипящими компонентами (LMR) холодильной смеси, и эти фазы смешиваются перед косвенным теплообменом, отличающийся тем, что

- косвенный теплообмен осуществляют в по меньшей мере двух теплообменниках (Е3, Е4),

- причем первый теплообменник (Е4) служит для предварительного охлаждения, а второй теплообменник (Е3) служит для сжижения обогащенной углеводородом фракции (200-203), и

- в первый теплообменник (Е4) подают холодильную смесь, которая содержит от 5 до 50% жидкой фазы (3, 15), которая обогащена высококипящими компонентами (HMR) холодильной смеси, и таким образом перемешивают с газовой фазой (6, 14), которая обогащена низкокипящими компонентами (LMR) холодильной смеси, что устанавливается отношение смеси HMR/LMR между 1, 2 и 10.

2. Способ по п. 1, отличающийся тем, что на первый теплообменник (Е4) подают холодильную смесь, которая содержит от 10 до 30% жидкой фазы, которая обогащена высококипящими компонентами (HMR) холодильной смеси.

3. Способ по п. 1 или 2, отличающийся тем, что устанавливается отношение смеси HMR/LMR между 2 и 5.

4. Способ по п. 1 или 2, отличающийся тем, что частичный поток (13, 17) газовой фазы (6) подают в холодильную смесь (12, 16) на холодном конце первого и/или второго теплообменника (Е3, Е4).

5. Способ по п. 3, отличающийся тем, что частичный поток (13, 17) газовой фазы (6) подают в холодильную смесь (12, 16) на холодном конце первого и/или второго теплообменника (Е3, Е4).



 

Похожие патенты:

Изобретение относится к области сжижения газов и может быть использовано при переработке природного газа на газораспределительной станции (ГРС). Отбираемый из магистрального газопровода природный газ, осушенный и очищенный от примесей, разделяют на три потока, которые одновременно направляют: первый поток как продукционный - на сжижение, второй и третий как вспомогательные - на обеспечение электроэнергией и хладагентами агрегатов прохождения продукционного потока.

Изобретение относится к технологии сжижения природного газа. Способ сжижения природного газа заключается в том, что подготовленный природный газ предварительно охлаждают, отделяют этан, переохлаждают сжижаемый газ с использованием охлажденного азота в качестве хладагента, снижают давление сжижаемого газа, отделяют несжиженный газ и отводят сжиженный природный газ.

Изобретение относится к области холодильной и криогенной техники. Поток хладагента, состоящий из нескольких компонентов с различной температурой кипения, сжимается в первой ступени сжатия, охлаждается в промежуточном охладителе, после промежуточного охладителя первой ступени сжатия и смешения поток с промежуточным давлением разделяется в первом сепараторе на жидкую и газовую фракции.

Заявлен способ обратного сжижения богатой метаном фракции, в частности испаренного газа. При этом богатую метаном фракцию сжимают до давления, которое по меньшей мере на 20% превышает критическое давление подлежащей сжатию фракции, сжижают и переохлаждают.

Изобретение относится к способу сжижения природного газа в плавучей установке по сжижению. Способ включает в себя: a) введение хладагента в разделительный сосуд (42) для образования потока (6) парового хладагента и потока (8) жидкого хладагента; b) введение потока (8) жидкого хладагента около нижней части расположенной снаружи относительно разделительного сосуда (42) сердцевины (50) теплообменника; c) введение более теплого технологического потока (12) в расположенную снаружи сердцевину (50) теплообменника в месте над потоком (8) жидкого хладагента; d) охлаждение более теплого технологического потока (12) через непрямой теплообмен с потоком жидкого хладагента (8) в расположенной снаружи сердцевине (50) теплообменника для образования охлажденного технологического потока (14) и потока (16) частично выпаренного хладагента; e) отвод охлажденного технологического потока и потока частично выпаренного хладагента из расположенной снаружи сердцевины (50) теплообменника.

Изобретение относится к криогенной технике. Малогабаритная установка сжижения природного газа включает в себя участок газопровода, криогенную газовую машину (КГМ), работающую по обратному циклу Стирлинга, теплообменники вымораживатели-конденсаторы природного газа (ПГ), криогенную емкость для сжиженного природного газа (СПГ), газодувку и подогреватель азота.

Изобретение относится к способу и установке для сжижения природного газа в криогенном теплообменнике (ЕС1) посредством протекания этого газа в непрямом контакте с потоком (S1) жидкого хладагента, входящего в этот теплообменник (ЕС1) при температуре Т0 и под давлением Р1.

Изобретение относится к криогенной технике. Установка для сжижения газов содержит компрессор негорючего газа 17 для сжатия негорючего газового хладагента с концевым охладителем 19 для охлаждения части потока сжатого неохлажденного негорючего газового хладагента делителя 18, догреватель части потока сжатого негорючего газового хладагента 33, компрессор продукционного газа 1, концевой охладитель 2 сжатого продукционного газа, дожимающий компрессор продукционного газа 3, концевой охладитель 4 дожимающего компрессора продукционного газа 3, насос жидкого криопродукта 11, детандерный сборник-отделитель 10 негорючего сжиженного газового хладагента с погружным теплообменником-охладителем сжиженного криопродукта.

Изобретение относится к способу и устройству для удаления азота из криогенной углеводородной композиции. По меньшей мере первую часть криогенной углеводородной композиции подают в колонну десорбции азота.

Изобретение относится к способу и устройству для удаления азота из криогенной углеводородной композиции. По меньшей мере первая порция криогенной углеводородной композиции подается в колонну отпаривания азота в виде первого потока сырья для колонны отпаривания азота.
Изобретение относится к способам сжижения природного газа и может быть использовано при подводном освоении газовых и газоконденсатных месторождений. Последовательно проводят два независимых холодильных цикла сжижения природного газа.

Изобретение относится к области сжижения газов и может быть использовано при переработке природного газа на газораспределительной станции (ГРС). Отбираемый из магистрального газопровода природный газ, осушенный и очищенный от примесей, разделяют на три потока, которые одновременно направляют: первый поток как продукционный - на сжижение, второй и третий как вспомогательные - на обеспечение электроэнергией и хладагентами агрегатов прохождения продукционного потока.

Способ для сжижения потока углеводородов, таких как природный газ, полученных из подаваемого потока, с использованием теплообменника, например спаянного алюминиевого пластинчатого теплообменника, установленного вертикально, содержащего верхнюю часть, где температура является наивысшей, и холодную нижнюю часть, где температура является наинизшей, и которая физически отлична от верхней части, причем упомянутый способ содержит, по меньшей мере, следующий этап: введения потока двухфазного охладителя в теплообменник, по меньшей мере, из одного входа нижней части таким образом, чтобы направление потока упомянутого охладителя в теплообменнике спускалось.

Изобретение относится к газовой промышленности, в частности к охлаждению богатой углеводородами фракции (1). Ее охлаждают относительно по меньшей мере одного контура циркуляции хладагента (10-15).

Изобретение относится к газовой и нефтяной промышленности, а именно к установкам подготовки газа адсорбционным способом, и может быть использовано в газовой, нефтяной, нефтехимической, химической отраслях промышленности на установках подготовки газа.

Изобретение относится к технологии сжижения и разделения природного газа. Сжижающая система (1) для природного газа включает блок удаления воды из исходного газообразного материала, первый расширитель (3), который производит энергию посредством использования природного газа под давлением в качестве газообразного материала; первый охлаждающий блок (11, 12), который охлаждает газообразный материал, имеющий пониженное давление посредством расширения в первом расширителе; дистилляционный блок (15) для уменьшения содержания или удаления тяжелого компонента, содержащегося в газообразном материале, посредством дистилляции газообразного материала, охлажденного первым охлаждающим блоком; первый компрессор (4) для сжатия газообразного материала, из которого частично или полностью удалены тяжелые компоненты посредством дистилляционного блока, за счет использования энергии, производимой в первом расширителе; и сжижающий блок (21) для сжижения газообразного материала, сжатого первым компрессором, посредством теплообмена с хладагентом.

Изобретение относится к способу получения водорода и генерирования энергии. Способ включает стадии, на которых: (a) газообразное углеводородное сырье подвергают эндотермической реакции парового риформинга контактированием в зоне реакции парового риформинга для получения газообразной смеси, содержащей водород и монооксид углерода; (b) извлекают водород из указанной смеси; (c) подают топливо и окислитель в турбину, содержащую последовательно компрессор, камеру горения и турбину расширения, где топливо сжигают со сжатым окислителем в камере горения с получением потока дымового газа; (d) подают по меньшей мере часть указанного потока дымового газа в турбину расширения для генерирования энергии и для получения отходящего газа турбины; (e) обеспечивают теплоту для указанной эндотермической реакции риформинга приведением потока горячего газа, генерированного на стадии (с) и/или стадии (d), в теплообменный контакт с зоной реакции парового риформинга, и на стадии (f) сжижают водород, извлеченный на стадии (b), подвергая извлеченный водород циклу сжижения, содержащему охлаждение и компримирование водорода.

Изобретение относится к области криогенной техники. Способ заключается в том, что формируют воздушный поток атмосферного воздуха, осушают его в роторном адсорбционном осушителе воздуха низкого давления 1, направляют осушенный воздух в воздушный компрессор 2 для его сжатия, разделяют сжатый воздух с помощью разделителя воздуха 3 на два потока, один поток сжатого воздуха направляют потребителю кислорода, а другой - через азотный компрессор 4 в накопительный азотный ресивер 5 для последующего осуществления пневматического привода криогенной арматуры.

Изобретение относится к технологии сжижения природного газа. Способ сжижения природного газа заключается в том, что подготовленный природный газ предварительно охлаждают, отделяют этан, переохлаждают сжижаемый газ с использованием охлажденного азота в качестве хладагента, снижают давление сжижаемого газа, отделяют несжиженный газ и отводят сжиженный природный газ.

Изобретение относится к области сжижения газов и их смесей и может быть применено для частичного сжижения в каскадных установках на газораспределительных станциях (ГРС) магистральных газопроводов.
Наверх