Способ и устройства для изготовления таблетки


G01N1/28 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2663769:

ТИССЕНКРУПП ИНДАСТРИАЛ СОЛЮШНЗ АГ (DE)

Изобретение относится к способу и устройству для изготовления таблетки, которая предпочтительно предусмотрена для последующего анализа с целью химического определения вещества предпочтительно в промышленности основных материалов. Способ изготовления таблетки, которая предпочтительно предусмотрена для последующего анализа для определения вещества, в котором: а) поток вещества расплавляют, b) расплавленный поток материала охлаждают без формообразования до стекловидного материала, с) измельчают, d) и по меньшей мере часть измельченного потока вещества прессуют для образования таблетки, отличается тем, что измельчение расправленного потока вещества производят по меньшей мере частично одновременно с его охлаждением. 2 н. и 11 з.п. ф-лы.

 

Область техники, к которой относится изобретение

Изобретение относится к способу, а также к устройству для изготовления таблетки, которая предпочтительно предусмотрена для последующего анализа с целью химического определения вещества предпочтительно в промышленности основных материалов.

Уровень техники

Известно изготовление таблеток в форме прессованных таблеток таким образом, что производят размалывание материала таблетки с использованием давления и/или связующего вещества, в ходе последующей обработки вновь приводят его к виду таблетки. Способ такого рода предполагает, что материал таблетки перед размалыванием уже присутствует в пригодной для готовой таблетки консистенции вещества.

Далее, известно изготовление таблеток из расплава. При этом материал таблетки расплавляют и расплав заливают в форму для таблетки и охлаждают в ней. Такое охлаждение с одновременным приданием формы является, однако, затруднительным как в технологическом, так и аппаратном отношениях. Так, охлаждение плавкой таблетки должно производиться в тщательно контролируемых условиях, так как слишком быстрое охлаждение ведет к разрушению таблетки, в то время как при слишком длительном охлаждении происходит кристаллизация расплава, так что таблетка также теряет свою прочность.

Раскрытие изобретения

Задачей изобретения является создание способа, а также устройства для изготовления таблетки, предпочтительно предусмотренной для последующего химического анализа, которые являются существенно более простыми в отношении технологического производства и в отношении необходимых аппаратных затрат по сравнению с ранее известными способами и устройствами.

В соответствии с изобретением эту задачу решают в способе признаками п. 1 и в устройстве признаками п. 10.

Предпочтительные варианты исполнения изобретения являются предметом дополнительных пунктов с 2 по 9 и с 11 по 15.

Осуществление изобретения

В то время как при известных ранее способах изготовления таблетки из расплавленного потока вещества расправ определенным образом заливают в форму и в ней охлаждают к виду таблетки, для соответствующего изобретению способа характерно неформованное охлаждение расплавленного потока вещества. При этом стекловидный материал застывает в одной случайной форме и последствии его подвергают измельчению и прессованию к виду прессованной таблетки. При этом скорость неформованного охлаждения расправленного потока вещества не является критичной, что существенно упрощает весь способ в целом.

Поток вещества или доли потока вещества может содержать, например, натуральные включения, такие как силикаты, карбонаты, сульфаты, сульфиды, соли, окиси и т.п., или включения из продуктов промышленных процессов, например шлаки, летучую золу, сплавы или другие соединения металлов.

Под стекловидным материалом или под стекловидной структурой понимают, в частности, аморфный материал, который после охлаждения из расплава не содержит кристаллической структуры. Такой стекловидный материал может быть получен, например, путем быстрого охлаждения расплава, причем предотвращается кристаллизация материала. Кристаллографические характеристики потока вещества сохраняются предпочтительно после охлаждения потока вещества, так что после этапа с) размалывания и после этапа d) прессования, по меньшей мере, одной части размолотого потока вещества к виду прессованной таблетки прессованная таблетка имеет стекловидную структуру. Кристаллографические свойства потока вещества не претерпевают изменений ни за счет размалывания охлажденного потока вещества, ни за счет следующего за размалыванием прессованием потока вещества и стекловидная структура сохраняется.

За счет стекловидной аморфной структуры прессованной таблетки обеспечивается возможность последующего анализа, например, состава таблетки. Далее, такая таблетка со стекловидной структурой является в результате предшествовавших измельчения и прессования значительно более прочными, нежели стекловидная таблетка, охлажденная из расплава.

Таким образом, без формообразования расплава, а именно из охлажденного без формования потока вещества, получают прессованную таблетку, с помощью которой неожиданным образом могут быть достигнуты те же аналитические результаты, что и в случае классических полученных из расплава таблеток описанного выше известного типа. При положенных в основу изобретения испытаниях считывавшийся ранее специалистами обязательным к выполнению этап формования таблетки из расплава оказался не являющимся более необходимым. Соответствующий изобретению отказ от затруднительного формообразования при одновременном охлаждении ведет к существенному упрощению процесса изготовления таблетки в технологическом и аппаратном отношениях.

Таким образом, соответствующий изобретению способ комбинирует, тем самым, техники изготовления расплава, охлаждения расплава без затруднительного формообразования, а также измельчение прессованной таблетки техническими частями пресса. Новый способ обеспечивает существенно более простую манипуляцию с прессованной таблеткой в автоматизированном окружении по сравнении с классическими полученными из расплава таблетками. Изготовленная по соответствующему изобретению способу прессованная таблетка является, кроме того, отчетливо более прочной, чем изготовленная по обычному способу из расплава таблетка. Соответствующая изобретению таблетка является весьма нечувствительной к манипуляциям и не разбивается при препарировании.

Следующее преимущество соответствующего изобретению способа заключается в отсутствии необходимости дополнительных изложниц (литьевых форм) из платины, которые необходимы для изготовления известных изготовленных из расплава таблеток.

В соответствии с одним целесообразным исполнения соответствующего изобретению способа охлажденный без формообразования поток вещества измельчают до размера зерна менее 5 мм, предпочтительно менее 1 мм.

Измельчение можно производить также полностью или частично одновременно с охлаждением расплавленного потока вещества.

При и/или после процесса плавления можно производить гомогенизацию расплава предпочтительно путем перемешивания, встряхивания и/или взбалтывания.

Охлаждение расплавленного потока вещества можно производить с помощью охлаждающего газа и/или охлаждающей жидкости, предпочтительно при помощи металлической поверхности, например охлажденной или неохлажденной металлической пластины.

Измельчение целесообразно включает в себя, по меньшей мере, одно предварительное измельчение и одно основное измельчение, причем длительность предварительного измельчения составляет более 30 с, предпочтительно более 150 с, особо предпочтительно более 280 с, причем основное измельчение длится более 25 с и менее 200 с. При этом при предварительном измельчении и/или при основном измельчении возможно использование одного или нескольких вспомогательных средств измельчения.

Для измельчения целесообразно используют мельницу тонкого помола с числом оборотов между 650 и 1850 об/мин.

В соответствии с одним следующим исполнением изобретения с помощью валков или шариков может быть образован охлаждающий агрегат, который одновременно может служить для измельчения неформованного расплавленного потока вещества.

Охлаждающий агрегат может быть также образован с помощью средств, вырабатываемых с помощью газовой и/или водяной завесы, через которую проходит неформованный расплавленный поток вещества.

Мельница тонкого помола может быть целесообразно выполнена с помощью дисковой мельницы, шаровой мельницы, валковой мельницы или комбинации этих типов мельниц.

Пресс может быть выполнен в качестве долбежного пресса.

Изготовленная по соответствующему изобретению прессованная таблетка предусмотрена, как правило, для последующего химического анализа. Для этого ее подводят к пригодной системе анализа, предпочтительно к установке XRF (установка рентгенофлуоресцентного анализа).

С помощью рентгенофлуоресцентного анализа (XRF) химический аналитик может в принципе определить все твердые вещества прессованных таблеток. Конечно, органические субстанции практически не рассматривают, так как они по всем правилам сгорели бы под воздействием высоких температур при процессе плавления.

Плавлению подвергают в основном смесь материала пробы и флюса. Соотношение масс между флюсом и материалом пробы является постоянным на протяжении всех проб и может составлять от 1:2 до 20:1. Предпочтительно исходят из соотношения между 2:1 и 6:1.

В результате плавления и охлаждения химический состав не изменяется.

За счет использования флюса температуры плавления не зависит от материала пробы. Часто температура плавления смеси составляет приблизительно 850-1500°С, в частности 1050-1100°С.

Охлаждение до комнатной температуры длится в целом 4-8 мин.

Для дальнейшего пояснения изобретения в последующем описаны пять этапов изготовления прессованной таблетки из расплава.

1. Дозирование материалов

С помощью дозирующих устройств (например, виброжелоба) производят дозирование материала пробы, а также флюса (тетраборат лития, спектромелт). Флюс содержит, например, составные вещества, такие как LiBr (бромид лития). Навеска должна составлять 6-17 г, причем соотношение между флюсом и материалом пробы поддерживают постоянным для всех проб. Смесь помещают в тигель, например, из платины, графита, корунда или другой пригодной керамики.

Флюс необходимо добавлять в форме таблеток.

Перед плавлением смесь подвергают предварительному измельчению с целью достижения лучшего перемешивания материала пробы и флюса.

2. Плавление

Дозированную смесь плавят в печи (приблизительно индукционной печи или муфельной печи) или на газовом пламени. Для гомогенизации расправа возможно использование пригодного устройства, в частности, устройства перемешивания, встряхивания или взбалтывания.

3. Охлаждение

Расплав плавно охлаждают, приблизительно по одному из следующих методов:

- выливание расплава на охлажденную металлическую пластину, к которой подключено устройство, которое с помощью механического импульса отделяет охлажденный расплав от пластины и в завершении производит ее чистку. По мере необходимости ниже металлической пластины может быть предусмотрено устройство для измельчения образованной при плавлении крошки;

- выливание расплава в небольшую вальцовую дробилку ("Mini-Polycom"). В результате вращения валков происходит охлаждение их и расплава;

- выливание расплава в охлаждающую жидкость.

В случае необходимости более грубые частиц охлажденного расплава измельчают до размера зерна менее 5 мм.

4. Изготовление прессованной таблетки

Охлажденный расплав подают в мельницу тонкого помола. Дозирование не является обязательно необходимым. Процесс измельчения может состоять из предварительного измельчения и основного измельчения или из одного единственного измельчения. Число оборотов мельницы тонкого помола лежит в диапазоне между 650 и 1850 об/мин.

При достаточном количестве материала пробы производят определение предварительной пробы, которую измельчают в мельнице перед самой пробой и выбрасывают. Таким образом, предотвращается возможное загрязнение ранее поступившим материалом пробы.

Измельчение можно проводить с использованием вспомогательных средств измельчения.

5. Прессование измельченного материала к виду прессованной таблетки

Этапы 4 и 5 могут быть осуществлены либо с помощью комбинированного измельчающего и прессующего устройства, либо с использованием мельницы тонкого помола и пресса для прессования таблетки. В последнем случае транспортировку материала от мельницы тонкого помола к прессу для прессования таблетки производят, например, с помощью робота или транспортировочной ленты.

1. Способ изготовления таблетки, которая предпочтительно предусмотрена для последующего анализа для определения вещества, в котором

а) поток вещества расплавляют,

b) расплавленный поток материала охлаждают без формообразования до стекловидного материала,

с) измельчают, и

d) по меньшей мере часть измельченного потока вещества прессуют для образования таблетки, отличающийся тем, что измельчение расправленного потока вещества производят, по меньшей мере, частично одновременно с его охлаждением.

2. Способ по п. 1, отличающийся тем, что охлажденный без формообразования поток вещества измельчают до размера зерна менее 5 мм, предпочтительно менее 1 мм.

3. Способ по п. 1, отличающийся тем, что при процессе плавления и/или после процесса плавления обеспечивают гомогенизацию расплава, предпочтительно путем перемешивания, встряхивания и/или взбалтывания.

4. Способ по п. 1, отличающийся тем, что охлаждение расплавленного потока вещества производят с помощью охлаждающего газа, охлаждающей жидкости и/или охлажденной или неохлажденной металлической поверхности.

5. Способ по п. 1, отличающийся тем, что измельчение включает по меньшей мере предварительное измельчение и основное измельчение, причем длительность предварительного измельчения составляет более 30 с, предпочтительно более 150 с, особо предпочтительно более 280 с и длительность основного измельчения составляет более 25 с и менее 200 с.

6. Способ по п. 1, отличающийся тем, что при измельчении используют мельницу тонкого помола с числом оборотов в диапазоне между 650 и 1850 об/мин.

7. Способ по п. 1, отличающийся тем, что измельченный поток вещества подводят к устройству прессования.

8. Способ по п. 5, отличающийся тем, что при предварительном измельчении и/или при основном измельчении используют вспомогательное средство измельчения.

9. Устройство для изготовления таблетки, которая предпочтительно предусмотрена для последующего анализа для определения вещества, содержит:

а) плавильный агрегат для плавления потока вещества,

b) охлаждающий агрегат для охлаждения неформованного, расправленного потока вещества, причем охлаждающий агрегат выполнен таким образом, что охлажденный поток вещества содержит стеклообразный материал,

с) мельницу тонкого помола для измельчения неформованного, расправленного потока вещества,

d) а также пресс для изготовления прессованной таблетки из по меньшей мере одной части измельченного потока вещества, отличающееся тем, что охлаждающий агрегат образован валками или шариками и одновременно служит для измельчения неформованного, расплавленного потока вещества.

10. Устройство по п. 9, отличающееся тем, что охлаждающий агрегат образован охлажденной или неохлажденной металлической пластиной.

11. Устройство по п. 9, отличающееся тем, что охлаждающий агрегат образован средствами, которые вырабатывают газовую и/или водяную завесу.

12. Устройство по п. 9, отличающееся тем, что мельница тонкого помола образована дисковой мельницей, шаровой мельницей, валковой мельницей или комбинацией этих типов мельниц.

13. Устройство по п. 9, отличающееся тем, что пресс выполнен в виде пресса с толкателем.



 

Похожие патенты:

Использование: для определения золота рентгенофлуоресцентным методом. Сущность изобретения заключается в том, что определение золота проводят размещая исследуемый объект в потоке рентгеновского излучения трубки с анодом из молибдена и измеряя спектр характеристического излучения на полупроводниковом кремниевом детекторе, при этом в качестве аналитической линии для золота выбирают Lα 1 линию, напряжение 35 кВ, силу тока 250 мкA.

Использование: для рентгенофлуоресцентного определения концентрации цинка в антикоррозионных эпоксидных покрытиях протекторного типа. Сущность изобретения заключается в том, что определение фактического содержания элементарного цинка в высоконаполненных эпоксидных антикоррозионных покрытиях выполняют методом рентгенофлуоресцентного анализа с использованием в качестве калибровочных образцов покрытий состава, максимально приближенного к составу промышленных покрытий.

Изобретение относится к способам определения технического состояния двигателей, машин и механизмов по характеристикам металлических частиц износа, обнаруженных в смазочных маслах, топливах и специальных жидкостях.

Изобретение относится к оперативному определению количества содержания цемента в грунтоцементной конструкции, созданной струйной цементацией. При проведении струйной цементации из количества цемента, необходимого для создания подземной строительной конструкции, замешивают цементный раствор с добавлением в него химического элемента, содержание которого в грунте не превышает 0,1% и в количестве, определяемом рентгенофлуоресцентным анализом, производят бурение лидерной скважины до проектной отметки и в процессе обратного хода в буровую колонну под высоким давлением подают цементный раствор для образования в грунте строительной конструкции, при этом из грунта выделяется грунтоцементная пульпа, отбирают пробу цементного раствора и грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, производят замер верхней части возведенной конструкции, вычисляют ее площадь, а затем количество цемента (в сухом состоянии), содержащееся в 1 м3 подземной конструкции, рассчитывают из заданного соотношения.

Изобретение относится к способам экспрессного контроля объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией.

Использование: для рентгеновского флуоресцентного анализа пульп обогатительного производства. Сущность изобретения заключается в том, что устройство для рентгеновского флуоресцентного анализа пульп обогатительного производства содержит пробозаборник, измерительную камеру, малогабаритный многоканальный рентгенофлюоресцентный анализатор, электронный блок обработки информации и управления устройством, при этом пробозаборник выполнен в виде аэролифта, а измерительная камера выполнена в виде проточной емкости с переливом, при этом устройство дополнительно содержит динамический сократитель пробы, перекачивающий насос, вакуум-линию, вакуумный насос, датчик вакуума, держатель пробы, состоящий из корпуса фильтр-патрона, закрепленного на подвижной тяге, содержащей на противоположном от корпуса фильтр-патрона конце зубчатую рейку, находящуюся в зацеплении с ведущей шестерней, насаженной на ротор шагового электродвигателя, управляемого контроллером, обжимной механизм, устройство также дополнительно содержит автоматические переключающие клапаны подачи воздуха в аэролифт, сброса пробы пульпы в дренаж из накопительной емкости, сброса пульпы в дренаж из циркуляционного контура подачи пробы пульпы в измерительную камеру, подачи воды на промывку накопительной емкости, подачи воды на обмыв валиков, автоматический трехходовой клапан переключения присоединения вакуум-линии к магистрали поддачи воды на промывку или к всасывающему входу вакуумного насоса.

Использование: для получения рентгеновского изображения. Сущность изобретения заключается в том, что выполняют облучение рентгенолюминофоров рентгеновизиализирующих устройств пакетом импульсов рентгеновского излучения наносекундной длительности, при котором формирование изображения рентгеновизиализирующим устройством происходит путем регистрации как конвертированного рентгенолюминофором рентгеновского излучения непосредственно во время воздействия рентгеновского излучения, так и светосуммы конвертированного рентгенолюминофором рентгеновского излучения в паузах между импульсами рентгеновского излучения.

Использование: для проведения рентгенофлуоресцентного анализа. Сущность изобретения заключается в том, что от источника рентгеновского излучения на исследуемый образец направляют первичное излучение, при этом вторичное излучение, излученное исследуемым образцом, детектируют при помощи детектора и оценивают при помощи блока оценки, причем на траектории лучей вторичного излучения размещают по меньшей мере один фильтр, имеющий по меньшей мере один фильтрующий слой, образующий плоскость фильтра, и действующий в качестве полосового фильтра в зависимости от угла α фильтрующего слоя относительно вторичного излучения, при этом мешающую длину волны вторичного излучения отбирают посредством брэгговского отражения, причем устанавливают, при помощи установочного устройства, угол α фильтрующего слоя фильтра для отражения по меньшей мере одной мешающей длины волны вторичного излучения посредством брэгговского отражения, при этом детектируют отобранную длину волны вторичного излучения при помощи второго детектора, а полученные в результате сигналы передают в блок оценки.

Использование: для определения микроэлементов рентгенофлуоресцентным методом. Сущность изобретения заключается в том, что заявленный способ включает предварительное концентрирование микроэлементов из растворов соосаждением их комплексов с органическими реагентами с индифферентными – невзаимодействующими с определяемыми элементами и применяемыми реагентами – органическими соосадителями, представленными полимерами, не растворимыми в воде, но растворимыми в смешивающихся с водой органических растворителях.

Использование: для определения содержания углерода в чугунах. Сущность изобретения заключается в том, что осуществляют регистрацию интенсивности отраженных от кристаллической структуры цементита дифракционных линий.

Изобретение относится к способу автоматического отбора и упаковки микробиологических объектов, который может быть использован для работы с биологическими объектами размером от 0.1 мм до 0.5 мкм, находящимися в водной среде, такими, как хромосомы, сперматозоиды, бактерии, фрагменты растительных и животных тканей, споры грибов, пыльца и другие объекты, видимые в оптический микроскоп.

Предложенная группа изобретений относится к области фармакогеномики. Предложены способы и набор для прогнозирования чувствительности пациента со злокачественным новообразованием к лечению ингибитором Wnt посредством измерения дифференциальной экспрессии биомаркера Notch1 в образце злокачественного новообразования.

Изобретение относится к промышленной безопасности. Система постоянного контроля концентрации паров углеводородов нефти и нефтепродуктов в воздухе рабочей зоны при проведении огневых и газоопасных работ включает в себя передвижной газоанализатор, блок контроля и управления и блок исполнения радиокоманд.

Изобретение относится к сельскому хозяйству, а именно к способам тестирования эффективности регуляторов роста растений с помощью оптических характеристик, поскольку количество метаболитов, образующихся в процессе прорастания семян, характеризует степень их прорастания.

Изобретение может быть использовано в химической промышленности. Стандартные образцы для метрологического обеспечения методик выполнения измерений используются при оценке склонности автомобильных бензинов к образованию отложений в системах впрыска двигателя внутреннего сгорания и используют при контроле качества автомобильных бензинов в процессе их производства и эксплуатации.

Группа изобретений относится к биотехнологии, а именно к консервации клеток. Предложены раствор для консервации клеток и способ его получения, способ консервации клеток, способ изготовления фиксированных клеток и способ анализа клеток.

Настоящее изобретение относится к области биотехнологии, конкретно к пептидомиметикам эпитопа аполипопротеина А-I, и может быть использовано в медицине. Пептидомиметик эпитопа аполипопротеина А-I, способный специфично связываться с антителами против аполипопротеина А-I, используется в диагностическом иммунологическом методе анализа и позволяет выявить ряд сердечно-сосудистых заболеваний по образцу биологической жидкости.

Изобретение относится к экспериментальной биологии и медицине. Предложен способ получения образцов биопленок холерных вибрионов для исследования методом трансмиссионной электронной микроскопии, включающий культивирование биопленок в суспензии исследуемого штамма на поверхности пленок-подложек субстрата в течение не менее 5 суток при температуре 22°С.

Группа изобретений относится к области получения и подготовки образцов для исследования и анализа материалов в газообразном состоянии. Способ оценки средних за полет концентраций токсичных примесей в воздухе гермокабин летательных аппаратов и воздухе, поступающем от компрессоров газотурбинных двигателей, включает проведение отборов проб воздуха кабины или от фланца двигателя путем его прокачки через патроны пробоотборника с сорбентом с последующим газохроматографическим анализом на колонках разной селективности и полярности для идентификации компонентов-примесей, причем отбор проб воздуха кабины или от фланца двигателя проводят с соблюдением принципа изокинетичности отбора, для этого его проводят последовательно в два пробоотборника, при этом первый пробоотборник с сорбентом-фильтром тяжелых паров и аэрозольных частиц с малым динамическим сопротивлением используют в режиме аспирации и осуществляют отбор токсичных примесей со скоростью прокачки воздушного потока, соизмеримой со скоростью потока воздуха при дыхании, затем прошедшую через него пробу воздуха продавливают под избыточным давлением во второй пробоотборник через трубку-концентратор с сорбентом с большим динамическим сопротивлением для поглощения легких паров, при этом процесс циклически повторяется в течение всего полета, что снижает погрешность, возникающую при необратимой адсорбции части легких компонентов на внутренней поверхности емкости-пробоотборника легких паров, количество прокачанного через пробоотборники воздуха будет равно полному объему подпоршневого пространства, умноженному на количество циклов, и приводится к нормальным условиям с учетом средней за полет температуры и давления воздуха кабины или в воздухе, отбираемом от ГТД (по показанию бортовых датчиков).

Изобретение относится к области биохимии, в частности к антителу к адреномедуллину или его антигенсвязывающему фрагменту. Указанное антитело или его антигенсвязывающий фрагмент специфически связывается с N-концевой областью (ак-1-21) зрелого человеческого ADM, имеющей последовательность YRQSMNNFQGLRSFGCRFGTC, представленную в виде SEQ ID NO:23, и обладает аффинностью связывания с ADM, составляющей по меньшей мере 10-7 М.

Изобретение относится к области получения блочного пеностекла. Способ получения блочного пеностекла включает диспергирование стеклоотходов, смешивание их со вспенивающей смесью, гранулирование исходной шихты до размеров частиц 0,5-5,0 мм.

Изобретение относится к способу и устройству для изготовления таблетки, которая предпочтительно предусмотрена для последующего анализа с целью химического определения вещества предпочтительно в промышленности основных материалов. Способ изготовления таблетки, которая предпочтительно предусмотрена для последующего анализа для определения вещества, в котором: а) поток вещества расплавляют, b) расплавленный поток материала охлаждают без формообразования до стекловидного материала, с) измельчают, d) и по меньшей мере часть измельченного потока вещества прессуют для образования таблетки, отличается тем, что измельчение расправленного потока вещества производят по меньшей мере частично одновременно с его охлаждением. 2 н. и 11 з.п. ф-лы.

Наверх