Офсетная тороидально-параболическая зеркальная антенна (варианты)

Изобретение предназначено для использования в составе радиотехнических устройств для телевидения, радиовещания и радиосвязи через искусственные спутники Земли, находящиеся на геостационарной орбите, в сантиметровом и миллиметровом диапазонах волн. Антенна состоит из основного зеркала (рефлектора) в виде проводящей поверхности, образованной вращением несимметричной ветви параболы вокруг оси, перпендикулярной фокальной оси параболы, вспомогательного зеркала (контррефлектора) в виде проводящей поверхности, образованной вращением ветви гиперболы, первый фокус которой совпадает с фокусом параболы, вокруг оси, совпадающей с осью вращения параболы, и системы облучателей, расположенных на дуге окружности, образованной вторыми фокусами гиперболы. При этом контррефлектор образован вращением ветви гиперболы, выпуклой в сторону от параболы. В первом варианте антенны рефлектор и дуга облучателей расположены по разные стороны от контррефлектора, во втором варианте антенны дуга облучателей и контррефлектор расположены по разные стороны от рефлектора. Частным случаем второго варианта является антенна, в которой вращаемые ветви параболы и гиперболы пересекаются, а рефлектор и контррефлектор образуют единое целое. В первом и втором вариантах антенны вращаемая ветвь гиперболы может быть вырождена в прямую. Технический результат изобретения - снижение кросс-поляризационного излучения при одновременном увеличении шумовой добротности системы. 2 н. и 2 з.п. ф-лы, 5 ил.

 

Изобретение предназначено для использования в составе радиотехнических устройств для телевидения, радиовещания и радиосвязи через искусственные спутники Земли (ИСЗ), находящиеся на геостационарной орбите (ГСО), в сантиметровом и миллиметровом диапазонах волн.

Известны [1] многолучевые тороидально-параболические антенны, состоящие из одного зеркала (рефлектора) в виде проводящей поверхности, образованной вращением ветви параболы вокруг оси, перпендикулярной ее фокальной оси, и системы облучателей, расположенных на дуге окружности. Данные антенны позволяют формировать веерную диаграмму направленности (ДН) для одновременной радиосвязи с несколькими ИСЗ на ГСО.

При использовании для формирования поверхности рефлектора симметричной ветви параболы дуга облучателей затеняет раскрыв зеркала, снижая коэффициент использования площади. Кроме того, в этом случае имеет место реакция облучателя на зеркало, вызванная попаданием отраженного от рефлектора поля обратно в облучатель. Данные недостатки преодолеваются в офсетных антеннах при формировании поверхности рефлектора с помощью несимметричной ветви параболы. Однако в этом случае, как известно [2], существенно возрастает уровень кроссполяризационного излучения.

Однолучевые офсетные антенны с минимальным уровнем кроссполяризации реализуются по двухзеркальным схемам [3, 4]. Известны однолучевые и многолучевые антенны [1] с основным зеркалом (рефлектором) в виде проводящей поверхности, образованной вращением ветви параболы, и вспомогательным зеркалом (контррефлектором) в виде проводящей поверхности, образованной вращением ветви гиперболы или эллипса. Отличительной особенностью этих антенн является то, что используется ветвь гиперболы, выпуклая в сторону рефлектора.

Известны однолучевые антенны [5] с основным зеркалом (рефлектором) в виде проводящей поверхности, образованной вращением ветви параболы, и вспомогательным зеркалом (контррефлектором) в виде проводящей поверхности, образованной вращением ветви гиперболы, выпуклой в сторону от рефлектора. Данные антенны обладают низким уровнем кроссполяризации, а также благодаря большому размеру контррефлектора и размещению облучателей - низкой шумовой температурой, позволяющей обеспечить высокую шумовую добротность приемной системы [6, 7].

Техническим результатом предлагаемого изобретения является снижение кроссполяризационного излучения в многолучевой офсетной антенне при одновременном увеличении шумовой добротности системы.

Для этого предлагается офсетная тороидально-параболическая зеркальная антенна. Она состоит из основного зеркала (рефлектора) в виде проводящей поверхности, образованной вращением несимметричной ветви параболы вокруг оси, перпендикулярной фокальной оси параболы, вспомогательного зеркала (контррефлектора) в виде проводящей поверхности, образованной вращением ветви гиперболы, первый фокус которой совпадает с фокусом параболы, вокруг оси, совпадающей с осью вращения параболы, и системы облучателей, расположенных на дуге окружности, образованной вторыми фокусами гиперболы. При этом контррефлектор образован вращением ветви гиперболы, выпуклой в сторону от параболы. В первом варианте антенны рефлектор и дуга облучателей расположены по разные стороны от контррефлектора, во втором варианте антенны дуга облучателей и контррефлектор расположены по разные стороны от рефлектора. Частным случаем второго варианта является антенна, в которой вращаемые ветви параболы и гиперболы пересекаются, а рефлектор и контррефлектор образуют единое целое. И в первом, и во втором вариантах антенны вращаемая ветвь гиперболы может быть вырождена в прямую.

Изобретение поясняется чертежами:

- фиг. 1 - первый вариант офсетной тороидально-параболической зеркальной антенны (сечение поперечной плоскостью, перпендикулярной оси вращения);

- фиг. 2 - первый вариант офсетной тороидально-параболической зеркальной антенны (проекция антенны на продольную плоскость, образованную фокальной осью параболы при ее вращении);

- фиг. 3 - второй вариант офсетной тороидально-параболической зеркальной антенны (сечение поперечной плоскостью, перпендикулярной оси вращения);

- фиг. 4 - второй вариант офсетной тороидально-параболической зеркальной антенны (проекция антенны на продольную плоскость, образованную фокальной осью параболы при ее вращении);

- фиг. 5 - второй вариант офсетной тороидально-параболической зеркальной антенны, в которой вращаемые ветви параболы и гиперболы пересекаются (сечение поперечной плоскостью, перпендикулярной оси вращения).

Офсетная тороидально-параболическая зеркальная антенна (фиг. 1-5) содержит основное зеркало (рефлектор) 1 в виде проводящей поверхности, образованной вращением несимметричной ветви параболы 2 вокруг оси 3, перпендикулярной фокальной оси параболы 12, вспомогательного зеркала (контррефлектора) 4 в виде проводящей поверхности, образованной вращением ветви гиперболы 5, первый фокус которой совпадает с фокусом параболы 6, вокруг оси, совпадающей с осью 3 вращения параболы, и системы облучателей 7, 8, 9, расположенных на дуге окружности 10, образованной вторыми фокусами гиперболы.

Принцип работы офсетной тороидально-параболической зеркальной антенны (фиг. 1 и 3) в приближении геометрической оптики иллюстрируется лучами 11 и 13. В силу оптических свойств гиперболы лучи, исходящие из облучателя, находящегося во втором фокусе гиперболы, после отражения будут казаться исходящими из первого фокуса гиперболы 6. Поскольку данный фокус совмещен с фокусом параболы, то в силу оптических свойств последней после отражения от нее все лучи будут параллельны фокальной оси 12. За счет этого формируется синфазное поле в раскрыве антенны, обеспечивающее остронаправленное излучение.

Цель изобретения достигается за счет использования выпуклой в сторону от рефлектора ветви гиперболы совместно с расположением облучателей и рефлектора по разные стороны от контррефлектора - для первого варианта антенны (фиг. 1), либо с расположением контррефлектора и облучателей по разные стороны от рефлектора - для второго варианта антенны (фиг. 3, 5). Для таких взаимных расположений рефлектора, контррефлектора и облучателя в случае однолучевой антенны эффект снижения кроссполяризации установлен [4, 5]. При этом для каждого отдельного облучателя многолучевая антенна эквивалентна соответствующей ей однолучевой антенне.

Снижение шумовой температуры и, как следствие, повышение шумовой добротности в предлагаемой антенне достигается за счет контррефлектора, который имеет достаточно большие размеры и выполняет роль некоторого экрана, препятствуя попадание шумов земной поверхности в облучатель. Поскольку шумы земной поверхности обычно существенно выше шумов атмосферы [8], описанное экранирование приводит к достижению технического результата изобретения. При этом наибольшее экранирование достигается во частном случае второго варианта предлагаемой антенны, где вращаемые ветви параболы и гиперболы пересекаются, а рефлектор и контррефлектор образуют единое целое.

Поскольку в предлагаемых вариантах антенны вращаемая ветвь гиперболы имеет достаточно большой эксцентриситет, то гипербола с небольшой погрешностью может быть заменена прямой линией, эксцентриситет которой равен бесконечности [9].

ЛИТЕРАТУРА

1. Сомов A.M., Кабетов Р.В. Проектирование антенно-фидерных устройств: Учебное пособие для вузов. / Под ред. профессора A.M. Сомова. - М.: Горячая линия-Телеком, 2015. - 500 с.: ил.

2. Фролов О.П., Вальд В.П. Зеркальные антенны для земных станций спутниковой связи. - М.: Горячая линия-Телеком, 2008. - 496 с.: ил.

3. Коган Б.М. О поляризационных характеристиках зеркальных антенн. / Журнал радиоэлектроники, №9, 1999: [Электронный ресурс]. URL: http://jre.cplire.ru/win/sep99/2/text.html.

4. Dragone С. First-order correction of aberrations in Cassegrainian and Gregorian antennas. // IEEE Trans, on AP, 1983. V. AP-31. №5. - pp. 764-775.

5. Dragone C. Multibeam antenna arrangement with minimal astigmatism and coma. US Patent №4503435, 1985.

6. Jones S.R., Kelleher K.S. A new low noise, high gain antenna // IRE Internat. Convent. Rec, 1963, V.11. - pp. 11-17.

7. Бахрах Л.Д. Многозеркальные антенны. / Современные проблемы антенно-волноводной техники. Под ред. А.А. Пистолькорса. - М.: Наука, 1967.

8. Сомов A.M. Метод фрагментации для расчета шумовой температуры антенн. - М.: Горячая линия-Телеком, 2008. - 208 с.: ил.

9. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров: Пер. с англ., под общ. ред. И.Г. Абрамовича. - М.: Наука, 1974. - 832 с.: ил.

1. Офсетная тороидально-параболическая зеркальная антенна, состоящая из основного зеркала (рефлектора) в виде проводящей поверхности, образованной вращением несимметричной ветви параболы вокруг оси, перпендикулярной фокальной оси параболы, вспомогательного зеркала (контррефлектора) в виде проводящей поверхности, образованной вращением ветви гиперболы, первый фокус которой совпадает с фокусом параболы, вокруг оси, совпадающей с осью вращения параболы, и системы облучателей, расположенных на дуге окружности, образованной вторыми фокусами гиперболы, отличающаяся тем, что контррефлектор образован вращением ветви гиперболы, выпуклой в сторону от параболы, а рефлектор и дуга облучателей расположены по разные стороны от контррефлектора.

2. Офсетная тороидально-параболическая зеркальная антенна по п. 1, отличающаяся тем, что образующие рефлектор и контррефлектор ветви параболы и гиперболы пересекаются.

3. Офсетная тороидально-параболическая зеркальная антенна, состоящая из основного зеркала (рефлектора) в виде проводящей поверхности, образованной вращением несимметричной ветви параболы вокруг оси, перпендикулярной фокальной оси параболы, вспомогательного зеркала (контррефлектора) в виде проводящей поверхности, образованной вращением ветви гиперболы, первый фокус которой совпадает с фокусом параболы, вокруг оси, совпадающей с осью вращения параболы, и системы облучателей, расположенных на дуге окружности, образованной вторыми фокусами гиперболы, отличающаяся тем, что контррефлектор образован вращением ветви гиперболы, выпуклой в сторону от параболы, а дуга облучателей и контррефлектор расположены по разные стороны от рефлектора.

4. Офсетная тороидально-параболическая зеркальная антенна по п. 3, отличающаяся тем, что образующие рефлектор и контррефлектор ветви параболы и гиперболы пересекаются.



 

Похожие патенты:

Изобретение относится к антенной технике. Пассивная антенная система состоит из сверхширокополосных спиральных антенн, конструктивно представляющих собой комбинацию плоской и полусферической двузаходных спиралей на диэлектрическом корпусе.

Изобретение относится к технологиям связи и предназначено для устранения помех со стороны интермодуляционного сигнала, генерируемого нисходящей линией связи, создаваемых сигналу восходящей линии связи, как для той же самой полосы частот, так и других полос частот.

Изобретение относится к медицине. Матрица антенн для электрической связи с антенной субмиллиметрового размера, встроенной в офтальмологическое устройство, содержит: основание; первую подложку, поддерживаемую основанием, при этом первая подложка имеет первую форму, выполненную с возможностью взаимодействия с офтальмологическим устройством, имеющим одну или более форм, одна из которых комплементарна первой форме; и одну или более матриц изолированных антенн субмиллиметрового размера, выполненных с возможностью обеспечивать оптимизированную связь ближнего поля между по меньшей мере одной из изолированных антенн субмиллиметрового размера в одной или более матриц и по меньшей мере одной антенной субмиллиметрового размера в офтальмологическом устройстве.

Изобретение относится к области радиотехники и предназначено для идентификации объектов (товаров, изделий, конструкций и т.п.) различного назначения и получения сведений о них, в частности к RFID-меткам.

Изобретение относится к пассивным маркерам-ответчикам, являющимся вторичными источниками электромагнитного излучения. Радиоответчик состоит из приемной и переизлучающей антенн и системы последовательно соединенных нелинейных элементов - двухполюсников, образующих четырехполюсник.

Изобретение относится к области связи, более конкретно к устройствам связи, в частности к антенному блоку для телекоммуникационного устройства и телекоммуникационному устройству, которые могут быть использованы в сетях связи 5-го поколения.

Изобретение относится к технике антенных измерений и может быть использовано при измерении диаграммы направленности антенны в условиях, когда облучающее поле значительно отличается от плоской волны, например, из-за ограниченных габаритов измерительной камеры.

Изобретение относится к области спутниковой связи и может быть использовано для компенсации неидеальной поверхности рефлектора в системе спутниковой связи. Предложен способ, который включает измерение амплитуды и фазы сигналов, отраженных от рефлектора спутника, причем эти амплитуды и фазы формируют первую совокупность результатов измерения.

Изобретение относится к антенной технике и предназначено для управления амплитудно-фазовым распределением (АФР) поля на раскрыве деформированной фазированной антенной решетки (ФАР).

Изобретение относится к сетевой архитектуре, а именно к серверному шкафу и центру обработки и хранения данных на основе серверного шкафа. Технический результат заключается в уменьшении воздействия электромагнитного излучения на различные электронные приборы и устройства, что увеличивает срок службы электронных приборов и устройств и повышает качество передачи радиосигнала.

Изобретение относится к антенной технике и может быть использовано в качестве приемной или передающей антенны или элемента фазированной антенной решетки в системах радиосвязи или радиолокации. Антенна содержит первый диэлектрический слой, имеющий с верхней стороны первый печатный излучатель, а с нижней - первый экран, второй диэлектрический слой, расположенный над первым диэлектрическим слоем, второй печатный излучатель, расположенный над первым печатным излучателем, третий диэлектрический слой, расположенный над вторым диэлектрическим слоем, четвертый диэлектрический слой, расположенный под первым диэлектрическим слоем, и пятый диэлектрический слой, расположенный под четвертым диэлектрическим слоем, при этом на верхней поверхности пятого диэлектрического слоя расположен делитель мощности, от которого снизу запитывается первый печатный излучатель. Первый и второй печатные излучатели имеют квадратную форму, запитка первого печатного излучателя от делителя мощности производится через согласующий печатный элемент, примыкающий к боковой поверхности первого печатного излучателя, диэлектрический материал второго диэлектрического слоя имеет диэлектрическую проницаемость порядка 1, отношение значений толщины второго и первого диэлектрических слоев не менее 4, при этом второй печатный излучатель имеет габаритные размеры, превышающие размеры первого печатного излучателя, а расположение пар первого и второго печатных излучателей выполнено на эквидистантном расстоянии в узлах прямоугольной или треугольной сетки. Техническим результатом является увеличение полосы рабочих частот антенны за счет снижения диэлектрической проницаемости и увеличения толщины второго диэлектрического слоя. 2 ил.

Изобретение предназначено для использования в составе радиотехнических устройств для телевидения, радиовещания и радиосвязи через искусственные спутники Земли, находящиеся на геостационарной орбите, в сантиметровом и миллиметровом диапазонах волн. Антенна состоит из основного зеркала в виде проводящей поверхности, образованной вращением несимметричной ветви параболы вокруг оси, перпендикулярной фокальной оси параболы, вспомогательного зеркала в виде проводящей поверхности, образованной вращением ветви гиперболы, первый фокус которой совпадает с фокусом параболы, вокруг оси, совпадающей с осью вращения параболы, и системы облучателей, расположенных на дуге окружности, образованной вторыми фокусами гиперболы. При этом контррефлектор образован вращением ветви гиперболы, выпуклой в сторону от параболы. В первом варианте антенны рефлектор и дуга облучателей расположены по разные стороны от контррефлектора, во втором варианте антенны дуга облучателей и контррефлектор расположены по разные стороны от рефлектора. Частным случаем второго варианта является антенна, в которой вращаемые ветви параболы и гиперболы пересекаются, а рефлектор и контррефлектор образуют единое целое. В первом и втором вариантах антенны вращаемая ветвь гиперболы может быть вырождена в прямую. Технический результат изобретения - снижение кросс-поляризационного излучения при одновременном увеличении шумовой добротности системы. 2 н. и 2 з.п. ф-лы, 5 ил.

Наверх