Центробежный экстрактор с устройством для деэмульгирования

Изобретение относится к конструкциям центробежных экстракторов для системы жидкость-жидкость в технологии очистки и разделения эмульсий не смешивающихся жидкостей в урановой и радиохимической промышленности, в процессах гидрометаллургии, в химической, фармацевтической и пищевой промышленности, в технологии разделения эмульсий нефти. Центробежный экстрактор содержит корпус с камерой смешивания с мешалкой, камерой разделения - ротором, лопастным транспортным устройством, приводом, патрубками ввода и отвода легкой и тяжелой фаз. Камера разделения оснащена насадкой из гофрированной сетки, уложенной слоями в противофазе гофр, высота каждой из которых составляет 1,5-6,0 мм, причем высота насадки составляет 1/4-2/3 высоты камеры разделения. Также в верхней части камеры разделения размещен стабилизатор скорости тяжелой фазы в форме цилиндра. Технический результат: устранение взаимного эмульсионного уноса фаз с увеличением производительности экстрактора. 1 табл., 1 ил.

 

Изобретение относится к конструкциям центробежных экстракторов для системы жидкость-жидкость в технологии очистки и разделения эмульсий не смешивающихся жидкостей в урановой и радиохимической промышленности, в процессах гидрометаллургии, в химической, фармацевтической и пищевой промышленности, в технологии разделения эмульсий нефти.

В технологии очистки растворов способом экстракции в системе жидкость-жидкость известно множество типов оборудования, наиболее интенсивными из которых являются центробежные экстракторы. Принято считать, что экстрактор тем совершеннее, чем меньше рабочий объем ступени при заданной производительности и эффективности массопередачи, то есть чем больше коэффициент использования объема. Поэтому для уменьшения размеров аппарата и для повышения эффективности работы экстракторов камеру разделения центробежного экстрактора присоединяют к камере смешивания, при этом эмульсия диспергированных жидкостей незамедлительно поступает из камеры смешивания в камеру разделения.

Для интенсификации массообмена стараются получить максимально возможную поверхность раздела фаз перерабатываемых жидкостей, применяя мешалки, сочлененные с ротором (камерой разделения) и скоростью вращения равной скорости вращения ротора (до 3000 об/мин). Тонкость диспергирования жидкостей ограничивает образование трудно разделяющихся эмульсий, что, в свою очередь, снижает производительность центробежного экстрактора или делает невозможным его применение. Для снижения эмульсионного уноса применяют отбойные (отражающие) диски [1. Кузнецов Г.И., Пушков А.А., Косогоров А.В. Центробежные экстракторы ЦЭНТРЭК. М.: РХТУ им. Д.И. Менделеева, 2000. С. 24, 40].

Этот прием широко используется в конструировании центробежных экстракторов в РФ и за рубежом [Кузнецов Г.И., Пушков А.А., Косогоров А.В. Центробежные экстракторы ЦЭНТРЭК. М.: РХТУ им. Д.И. Менделеева, 2000. 214 с.; Пат. РФ №1732524, опубл. 30.11.1994; Пат. РФ №2393906, опубл. 10.07.2010; Warburton J.L. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations. University of Nevada, Las Vegas. December 2011. P. 40; Solvent extraction equipment evaluation study. Part 2. Work shop proceedings. Battelle pacific northwest laboratories. BNWL-2186. Pt 2. January 1977. P. 20; Georg F.V. et al. Designing and demonstration of the UREX+ process using spent nuclear fuel. Atalante 2004. Advances for future nuclear fuel cycles. International conference nimes, France. June 21-24, 2004. P. 16.]

Недостатком такого конструктивного решения является то, что отбойный диск, по сути, является диафрагмой, установленной на пути потока. Известно, что за диафрагмой образуется область пониженного давления - это приводит к завихрениям в потоке и его турбулизации. На практике эта особенность конструкции приводит к тому, что производительность центробежного экстрактора снижается из-за взаимного уноса фаз, поскольку фактически снижается путь движения капли в линейном режиме после дополнительной турбулизации за диафрагмой (отбойным диском). Так, практически не удается достигнуть производительности, например, указанной в [1. Кузнецов Г.И., Пушков А.А., Косогоров А.В. Центробежные экстракторы ЦЭНТРЭК. М.: РХТУ им. Д.И. Менделеева, 2000. 27, табл. 1. 4 с.] для экстрактора ЭЦ320. При аффинаже азотнокислого уранила в системе с раствором 30% ТБФ в РЭД-2 при 1500 об/мин ротора (камеры разделения) экстрактора, на существующем центробежном ЭЦТ320 возможно работать с удовлетворительным разделением фаз только на производительности 7,0-7,5 м3/час, при проектной 10 м3/час.

Из уровня техники известны конструкции центробежных экстракторов, позволяющие преодолеть указанный недостаток, но характеризующиеся сложностью изготовления или низкой эффективностью разделения эмульсий водной и органической фаз [Пат. РФ №2524756, опубл. 02.10.2012; Пат. РФ №2295377, опубл. 25.03.2005; Пат. РФ №2086288, опубл. 25.02.1991; Пат. РФ №2085249, опубл. 20.11.1995; Пат. РФ №2081666, опубл. 15.04.1992; Пат. РФ №2064321, опубл. 17.09.1993; Пат. РФ №2060778, опубл. 11.04.1994; Пат. РФ №2047321, опубл. 01.10.1992; Пат. США 4,857,040, опубл. 15.08.1989].

Наиболее близким по технической сущности к заявляемому является центробежный экстрактор с отбойным диском [Кузнецов Г.И., Пушков А.А., Косогоров А.В. Центробежные экстракторы ЦЭНТРЭК. М.: РХТУ им. Д.И. Менделеева, 2000. С. 47. рисунок 1.29] и конусным ротором, принятый в качестве прототипа. Экстрактор имеет типовое устройство, а камера разделения снабжена отбойным диском и совмещена со смесительной камерой, откуда лопастным транспортным устройством (ЛТУ) эмульсия жидкостей вбрасывается в камеру разделения. Граница раздела фаз, образованная в верхней части ротора не смешивающимися потоками органической и водной фаз имеет пульсирующую поверхность из-за изменения скорости водной фазы, вызванную изменением сечения потока из-за конусности ротора. Пульсация поверхности раздела фаз затрудняет разделение остатков эмульсии.

Данный экстрактор обладает теми же недостатками, что и предыдущие, оборудованные отбойными дисками и не имеющие устройства стабилизации скорости водной фазы. Эмульсия, полученная в камере смешивания, передается ЛТУ в камеру разделения, частично бьется об отбойный диск, что дополнительно измельчает частицы жидкостей, частично огибает отбойный диск, создавая циркуляционные токи за диском, изменяющие направление движения частиц от направления их движения в поле центробежных сил - легкой фазы к центру, тяжелой к периферии камеры. Следовательно, более половины высоты камеры не работает на разделение эмульсии на составляющие - легкую и тяжелую жидкости (макрофазы).

Технической задачей изобретения является создание конструкции разделительной камеры позволяющей в значительной мере устранить взаимный эмульсионный унос фаз с увеличением производительности экстрактора.

Указанная цель достигается тем, что в центробежном экстракторе, содержащем корпус с камерой смешивания с мешалкой, камерой разделения (ротором), лопастным транспортным устройством, приводом, патрубками ввода и отвода легкой и тяжелой фаз, в камере разделения (роторе) дополнительно установлен стабилизатор скорости тяжелой фазы в форме цилиндра, а вместо отбойного диска установлена насадка из гофрированной сетки.

На фиг. показана схема экстрактора (общий вид).

Центробежный экстрактор (см. фиг.) состоит из корпуса 1 с камерой смешивания 2, камерой разделения (ротором) 3, лопастным транспортным устройством (ЛТУ) 4, приводом 5. Камера смешивания 2 снабжена патрубками 6 и 7 ввода водной и органической фаз соответственно, мешалкой 8 и отражающими перегородками 9. Камера разделения 3 содержит насадку 10 из гофрированной сетки, уложенной слоями в противофазе гофр, и стабилизатор 11 скорости тяжелой фазы в форме цилиндра, а также патрубки 12 и 13 отвода соответственно легкой и тяжелой фаз из экстрактора.

Работа заявляемого центробежного экстрактора осуществляется следующим образом.

Эмульсии водной (тяжелой) фазы и органической (легкой) фазы, например, в процессе аффинажной переработки растворов уранил-нитрата - содовый раствор и регенерируемый трибутилфосфат, поступают в камеру смешивания 2 центробежного экстрактора, где под действием мешалки 8, вращающейся со скорость 1500 об/мин, диспергируются, образуя тонкую эмульсию.

ЛТУ 4 подхватывает эмульсию и вбрасывает ее внутрь камеры разделения 3. Камера разделения 3 в зоне поступления эмульсии заполнена насадкой 10 из гофрированной сетки, изготовленной из смачиваемого металла или пластика, устойчивого в среде перерабатываемых жидкостей. Поток из ЛТУ 4 входит в насадку 10, его скорость снижается обратно пропорционально увеличению площади сечения камеры разделения 3. На микрокапли эмульсии в этот момент действует сила от восходящего потока (определяемого линейной скоростью, зависящей от общего расхода эмульсии) и центробежная сила, получаемая от вращающегося ротора.

Микрокапли контактируют с гофрированной сеткой насадки 10.

Толщину проволоки (волокон) сетки, высоту гофр сетки насадки выбирают из условия минимизации веса насадки для снижения вибраций ротора. Минимальные значения величины ячейки сетки могут быть определены по величине сопротивления насадки, препятствующей достижению заданной производительности. Максимальная величина ячейки сетки и высота слоя насадки может быть определена по эффективности разделения эмульсии.

Полярность (гидрофильность или гидрофобность) поверхности материала гофрированной сетки предпочтительно аналогична полярности перерабатываемых растворов. Вещества с одинаковой полярностью эффективно взаимодействуют при контакте, и, следовательно, микрокапли эмульсии с большей скоростью обволакивают структурные элементы насадки и коалессциуют в макрофазу, которая легко отделяется от сопутствующей макрофазы в центробежном поле камеры разделения.

Гофрированная сетка изготовлена из коррозионностойкой проволоки (или волокон полимера).

Высота насадки составляет 1/4-2/3 высоты камеры разделения Уменьшение высоты насадки снижает эффективность коалесценции микрокапель эмульсии. Увеличение высоты насадки снижает производительность экстрактора за счет увеличения сопротивления слоя насадки потоку разделяемой эмульсии.

Гофры сетки образуют пространственную ячеистую структуру, стороны ячеек, состоят из проволоки (волокон) смачиваемого материала, микрокапли обеих фаз на смачиваемой поверхности проволоки (волокнах) коалесцируют, обволакивают проволоку, и при отрыве жидкости от проволоки образуются крупные капли, которые сливаются в макрофазу и эффективно отделяются в центробежном поле.

В центробежных экстракторах с конической камерой разделения тяжелая фаза движется с переменной скоростью из-за увеличения диаметра ротора, что приводит к возмущениям, волнам и турбулентности на границе раздела фаз. Для исключения этого явления (и повышения эффективности разделения эмульсии) перед выходом тяжелой фазы из экстрактора установлен стабилизатор 11 скорости тяжелой фазы в форме цилиндра. Восходящие потоки водной и органической фаз, содержащие некоторую часть не разделившейся эмульсии, входят в зону, где стабилизатор 11 скорости движения водной фазы придает цилиндричность камере разделения 3. Цилиндрическая внутренняя поверхность камеры разделения 3 исключает пульсации поверхности границы раздела фаз, что обеспечивает более глубокое разделение макрофаз.

В таблице приведены результаты работы центробежного экстрактора, взятого за прототип, и заявляемого центробежного экстрактора.

Таким образом, экспериментально подтверждено, что заявляемый центробежный экстрактор с насадкой из гофрированной сетки и стабилизатором скорости водной фазы позволяет увеличить скорость распада эмульсии и работать на производительности, по крайней мере, в два раза больше, чем аналогичный центробежный экстрактор, оборудованный отбойным диском.

При применении насадки из гофрированной сетки увеличивается полезное время разделения эмульсии (т.к. устранены удар потока об отбойный диск и завихрения жидкости за диском) и используется эффект коалесценции микрокапель в крупные капли (макрофазу) на поверхности материала гофрированной сетки, а стабилизатор скорости водной (тяжелой) фазы исключает пульсации поверхности раздела фаз, что увеличивает качество разделения макрофаз.

Центробежный экстрактор, содержащий корпус с камерой смешивания с мешалкой, камерой разделения – ротором, лопастным транспортным устройством, приводом, патрубками ввода и отвода легкой и тяжелой фаз, отличающийся тем, что в камере разделения – роторе дополнительно установлены стабилизатор скорости тяжелой фазы в форме цилиндра, а также насадка из гофрированной сетки.



 

Похожие патенты:

Изобретение относится к способу получения алкилалюмоксанов посредством реакции алкилалюминия с замещенным аллильным спиртом формулы ,где каждая из групп R1 и R2 независимо представляет собой алифатическую или ароматическую углеводородную группу, и R3, R4 и R5 представляют собой атомы водорода, в присутствии инертного органического растворителя.

Настоящее изобретение относится к каталитическому материалу для окисления NO, содержащему носитель катализатора, содержащий подложку из оксида церия-алюминия с диспергированными на ней платиной и палладием, при этом массовое отношение платины к палладию составляет по меньшей мере 1:1, а количество оксида церия в подложке составляет от 1% до 12% по массе.

Каталитическая микросфера каталитического крекинга со взвешенным катализатором, содержащая цеолит, где указанная микросфера сформирована из пульпы, содержащей: i) каолин, который прокаливали вне его экзотермического перехода; и или ii) кристаллы цеолита, или iii) гидратированный каолин и/или метакаолин, пульпа была смешана с 0.005-0.5 мас.% катионоактивного полиэлектролита относительно массы i) + ii) или i) + iii) перед или во время формирования указанной микросферы.

Изобретение относится к реакторам и способам проведения газожидкостных химических реакций. Описан реактор для проведения гомогенных каталитических реакций.

Изобретение относится к системе обменных реакций, системе производства модифицированного полиэфира, способу производства модифицированного полиэфира и модифицированному полиэфирному волокну, полученному этим способом.
Изобретение относится к способу получения ионной жидкости. Способ включает следующие стадии: a) приведение по меньшей мере одного акцептора электронной пары в контакт с по меньшей мере одним донором электронной пары с образованием аддукта, причем молярное соотношение акцептора электронной пары и донора электронной пары варьируется приблизительно от 1:1 до 1:5, при этом донор электрона выбран из группы, включающей в себя фосфин, амид, алкилсульфоксид, сложный эфир и спирт, или любую их комбинацию; и b) приведение аддукта в контакт с по меньшей мере одним акцептором электронной пары с получением ионной жидкости, причем молярное соотношение аддукта и акцептора электронной пары варьируется приблизительно от 1:1 до 1:6.

Изобретение может быть использовано в химической промышленности. Пентоксид ванадия промышленной категории превращают в окситрихлорид ванадия низкотемпературным хлорированием в псевдоожиженном слое.

Изобретение относится к технике мокрого пылеулавливания. Скруббер с подвижной насадкой содержит корпус с патрубками для запыленного и очищенного газа, оросительное устройство, нижнюю опорно-распределительную тарелку и верхнюю ограничительную тарелку, между которыми расположен слой насадка, брызгоуловитель и устройство для отвода шлама, нижняя опорно-распределительная и верхняя ограничительная тарелки и насадка выполнены из упругих материалов, а на нижней опорно-распределительной и верхней ограничительной тарелках установлены вибраторы.

Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка - оксида алюминия (корунда), и может быть использовано в металлообрабатывающей, машиностроительной, химико-металлургической промышленности.

Изобретение может быть использовано в химической промышленности. Пентоксид ванадия промышленной категории превращают в окситрихлорид ванадия низкотемпературным хлорированием в псевдоожиженном слое.

Изобретение относится к технике мокрого пылеулавливания. Скруббер с подвижной насадкой содержит корпус с патрубками для запыленного и очищенного газа, оросительное устройство, нижнюю опорно-распределительную тарелку и верхнюю ограничительную тарелку, между которыми расположен слой насадка, брызгоуловитель и устройство для отвода шлама, нижняя опорно-распределительная и верхняя ограничительная тарелки и насадка выполнены из упругих материалов, а на нижней опорно-распределительной и верхней ограничительной тарелках установлены вибраторы.

Изобретение относится к химической, металлургической, энергетической и другим сферам промышленности и связано с тепломассообменом и химическим обменом, и взаимодействием между двумя текучими средами, такими как газ и жидкость, например, для удаления пыли и химических загрязнителей газа.

Изобретение относится к теплоэнергетике, а именно к насадкам контактных тепломассобменных аппаратов, и может быть использовано в составе низконапорного оборудования на предприятиях оборотного водоснабжения и охлаждения воды в башенных и вентиляторных градирнях.

Изобретение относится к структурированной насадке для контактной колонны, осуществляющей массообмен или теплообмен между жидкими средами. Насадка состоит из пакета прямоугольных пластинок, содержащих складки, образующих последовательность каналов, которые содержат ребра, каждое из которых состоит по меньшей мере из одной разрезанной полосы в одной из пластинок остающейся жестко соединенной с пластинкой.

Изобретение относится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Технический результат - повышение степени очистки газового потока от целевого компонента и пыли.

Изобретение относится к области оборудования для контактирования жидких сред. Насадка состоит из пакета пластинок, содержащих складки, с образованием последовательности положительных и отрицательных остановок.

Изобретение относится к конструкциям пакетных насадок для тепло- и массообменных аппаратов, используемых для проведения процессов абсорбции, десорбции, мокрого пылеулавливания в химической, нефтехимической, энергетической, металлургических и других смежных отраслях промышленности.

Изобретение относится к установкам для окисления аммиака, в частности к газораспределителю для установки для окисления аммиака. Установка для окисления аммиака содержит емкость с внутренней стенкой и впускным отверстием для газа, слой катализатора, содержащийся в емкости, впускное отверстие для газа в емкость и газораспределитель, установленный во впускном отверстии для газа.

Изобретение относится к контактному устройству для осуществления процессов тепло- и массообмена в системе газ-жидкость и может найти применение в технологических процессах нефтяной, газовой, химической и других смежных отраслей промышленности.

Изобретение относится к способу каталитического крекинга в псевдоожиженном слое слабо коксующегося исходного сырья, имеющего углеродный остаток Конрадсона, равный или менее 0,1% мас., и содержание водорода, равное или более 12,7% мас., содержащий, по меньшей мере, стадию крекинга исходного сырья в присутствии катализатора, стадию разделения/отпаривания выходящих потоков из коксованных частиц катализатора, стадию регенерирования указанных частиц при частичном или полном сгорании кокса, и рециркуляцию к гомогенно распределенному и слабо коксованному катализатору перед регенерацией по меньшей мере одного коксующегося углеродного и/или углеводородного выходящего потока.

Изобретение относится к гидрометаллургической переработке рудных концентратов, преимущественно колумбитового или колумбито-танталитового концентрата. Способ разделения соединений ниобия и тантала включает коллективную экстракцию октанолом-1 ниобия и тантала из кислых сульфатно-фторидных растворов и добавку в полученный после экстракции раствор серной и плавиковой кислот.

Изобретение относится к конструкциям центробежных экстракторов для системы жидкость-жидкость в технологии очистки и разделения эмульсий не смешивающихся жидкостей в урановой и радиохимической промышленности, в процессах гидрометаллургии, в химической, фармацевтической и пищевой промышленности, в технологии разделения эмульсий нефти. Центробежный экстрактор содержит корпус с камерой смешивания с мешалкой, камерой разделения - ротором, лопастным транспортным устройством, приводом, патрубками ввода и отвода легкой и тяжелой фаз. Камера разделения оснащена насадкой из гофрированной сетки, уложенной слоями в противофазе гофр, высота каждой из которых составляет 1,5-6,0 мм, причем высота насадки составляет 14-23 высоты камеры разделения. Также в верхней части камеры разделения размещен стабилизатор скорости тяжелой фазы в форме цилиндра. Технический результат: устранение взаимного эмульсионного уноса фаз с увеличением производительности экстрактора. 1 табл., 1 ил.

Наверх