Полупроводниковое устройство и способ изготовления полупроводникового устройства

Авторы патента:


Полупроводниковое устройство и способ изготовления полупроводникового устройства
Полупроводниковое устройство и способ изготовления полупроводникового устройства
Полупроводниковое устройство и способ изготовления полупроводникового устройства
Полупроводниковое устройство и способ изготовления полупроводникового устройства
H01L21/4875 - Способы и устройства для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей (способы и устройства, специально предназначенные для изготовления и обработки приборов, относящихся к группам H01L 31/00- H01L 49/00, или их частей, см. эти группы; одноступенчатые способы изготовления, содержащиеся в других подклассах, см. соответствующие подклассы, например C23C,C30B; фотомеханическое изготовление текстурированных поверхностей или поверхностей с рисунком, материалы или оригиналы для этой цели; устройства, специально предназначенные для этой цели вообще G03F)[2]

Владельцы патента RU 2678509:

ТОЙОТА ДЗИДОСЯ КАБУСИКИ КАЙСЯ (JP)

Способ изготовления полупроводникового устройства включает в себя нанесение проводящей пасты, содержащей металлические частицы, на заданную область в электродной пластине, включающей в себя выемку на поверхности электродной пластины, причем заданная область находится рядом с выемкой, размещение полупроводниковой микросхемы на проводящей пасте так, чтобы внешний периферийный край полупроводниковой микросхемы располагался над выемкой, размещение оправки в положении над выемкой и вблизи внешнего периферийного края полупроводниковой микросхемы с обеспечением зазора между оправкой и внешней периферийной частью электродной пластины, которая представляет собой часть, расположенную дальше во внешней периферийной стороне, чем выемка, и затвердевание проводящей пасты путем нагревания проводящей пасты при приложении давления к полупроводниковой микросхеме в направлении электродной пластины. Изобретение обеспечивает снижение теплового напряжения, действующего вблизи внешнего периферийного края полупроводниковой микросхемы. 1 з.п. ф-лы, 9 ил.

 

Предпосылки создания изобретения

1. Область техники, к которой относится изобретение

[0001] Технология, раскрываемая в настоящем изобретении, относится к полупроводниковому устройству и способу изготовления полупроводникового устройства.

2. Описание предшествующего уровня техники

[0002] В публикации японской патентной заявки №2016-115865 раскрыта технология соединения полупроводниковой микросхемы и электродной пластины. Согласно этой технологии, на поверхность электродной пластины наносят проводящую пасту, содержащую металлические частицы, и на эту проводящую пасту помещают полупроводниковую микросхему. После этого обеспечивают затвердевание проводящей пасты путем ее нагревания с приложением давления к полупроводниковой микросхеме в направлении электродной пластины. Таким образом, полупроводниковая микросхема и электродная пластина соединяются вместе посредством соединительного слоя, который образуется при затвердевании проводящей пасты.

Сущность изобретения

[0003] Чтобы объединить полупроводниковую микросхему и электродную пластину с помощью проводящей пасты, необходимо нагреть проводящую пасту при приложении давления к проводящей пасте между полупроводниковой микросхемой и электродной пластиной. Когда проводящая паста нагревается и затвердевает, соединительный слой соединяется с полупроводниковой микросхемой и электродной пластиной. После этого, когда полупроводниковая микросхема, соединительный слой и электродная пластина возвращаются к комнатной температуре, эти компоненты сжимаются при понижении температуры. Во время этого процесса высокое тепловое напряжение воздействует на полупроводниковую микросхему из-за разницы в коэффициенте линейного расширения между полупроводниковой микросхемой и соединительным слоем. В частности, высокое тепловое напряжение действует вблизи внешнего периферийного края полупроводниковой микросхемы. Это тепловое напряжение, воздействующее на полупроводниковую микросхему, влияет на надежность полупроводниковой микросхемы. В настоящем изобретении предлагается технология снижения теплового напряжения, действующего вблизи внешнего периферийного края полупроводниковой микросхемы, в то время как электродная пластина и полупроводниковая микросхема соединены вместе проводящей пастой.

[0004] Первым объектом настоящего изобретения является способ изготовления полупроводникового устройства. Способ изготовления полупроводникового устройства включает в себя нанесение проводящей пасты, содержащей металлические частицы, на заданную область в электродной пластине, содержащей выемку на поверхности электродной пластины, причем заданная область примыкает к выемке. Способ изготовления полупроводникового устройства включает в себя размещение полупроводниковой микросхемы на проводящей пасте таким образом, чтобы внешний периферийный край полупроводниковой микросхемы располагался над выемкой. Способ изготовления полупроводникового устройства включает в себя затвердевание проводящей пасты путем нагревания проводящей пасты при приложении давления к полупроводниковой микросхеме в направлении электродной пластины.

[0005] Когда к полупроводниковой микросхеме прилагается давление в направлении электродной пластины на этапе затвердевания, часть проводящей пасты, зажатой между полупроводниковой микросхемой и электродной пластиной, вытекает к выемке. Вытекшая проводящая паста входит в контакт с частью полупроводниковой микросхемы вблизи внешнего периферийного края и с внутренней поверхностью выемки. При нагревании и отвердении проводящая паста образует соединительный слой, в котором металлические частицы соединяются друг с другом. Проводящая паста между заданной областью и полупроводниковой микросхемой затвердевает под высоким давлением. Таким образом, проводящая паста между заданной областью и полупроводниковой микросхемой затвердевает и образует низкопористый соединительный слой. Заданная область и полупроводниковая микросхема прочно соединяются вместе этим низкопористым соединительным слоем. С другой стороны, такое высокое давление не прикладывается к проводящей пасте между выемкой и полупроводниковой микросхемой. Поэтому проводящая паста между выемкой и полупроводниковой микросхемой затвердевает и образует высокопористый соединительный слой. Выемка и полупроводниковая микросхема соединяются вместе этим высокопористым соединительным слоем. Когда полупроводниковая микросхема, соединительный слой и электродная пластина возвращаются к комнатной температуре после затвердевания проводящей пасты, тепловое напряжение воздействует на полупроводниковую микросхему. Как описано выше, часть соединительного слоя, которая соединена с областью внешнего периферийного края полупроводниковой микросхемы, имеет высокую пористость. Поэтому эта часть соединительного слоя способна деформироваться в соответствии с тепловым напряжением. Таким образом, тепловое напряжение, возникающее вблизи внешнего периферийного края полупроводниковой микросхемы, снимается. Как было описано выше, в соответствии с этим способом изготовления, тепловое напряжение, возникающее вблизи внешнего периферийного края полупроводниковой микросхемы, может быть уменьшено.

[0006] В соответствии с вышеуказанным объектом, проводящая паста может не быть нанесена на нижнюю поверхность выемки на этапе нанесения проводящей пасты, и проводящая паста, вытекшая из заданной области в выемку, может соприкасаться с нижней поверхностью выемки на этапе затвердевания проводящей пасты.

[0007] В соответствии с этим объектом, поверхность части соединительного слоя, которая примыкает к внешнему периферийному краю полупроводниковой микросхемы, принимает форму, наклоненную относительно нижней поверхности полупроводниковой микросхемы так, чтобы смещаться в сторону нижней поверхности выемки с удалением от заданной области. Таким образом, трещины возникают в соединительном слое с меньшей вероятностью.

[0008] Согласно вышеуказанному объекту, в положении над выемкой и вблизи внешнего периферийного края полупроводниковой микросхемы может быть расположена оправка.

[0009] В соответствии с этим объектом, можно предотвратить набухание проводящей пасты вверх.

[0010] Второй объект настоящего изобретения относится к полупроводниковому устройству. Полупроводниковое устройство содержит электродную пластину, включающую в себя выемку и заданную область, примыкающую к выемке, причем выемка находится на поверхности электродной пластины. Полупроводниковое устройство включает в себя соединительный слой, который образован из металла и который покрывает область, включающую в себя заданную область и выемку. Полупроводниковое устройство содержит полупроводниковую микросхему, расположенную так, что она обращена к заданной области и выемке, причем полупроводниковая микросхема соединена с соединительным слоем над заданной областью и выемкой, и внешний периферийный край полупроводниковой микросхемы расположен над выемкой. Пористость соединительного слоя в выемке выше, чем пористость соединительного слоя в заданной области.

[0011] Согласно этому объекту, соединительный слой, который соединяет внешний периферийный край полупроводниковой микросхемы и выемку электродной пластины, имеет высокую пористость, так что тепловое напряжение, воздействующее на внешний периферийный край полупроводниковой микросхемы, может быть устранено.

[0012] Согласно вышеуказанному объекту, поверхность части соединительного слоя, которая примыкает к внешнему периферийному краю полупроводниковой микросхемы, может быть наклонена относительно нижней поверхности полупроводниковой микросхемы так, чтобы смещаться в сторону нижней поверхности выемки при удалении от заданной области.

[0013] Согласно этому объекту, трещины возникают в соединительном слое с меньшей вероятностью.

[0014] Согласно вышеуказанному объекту, соединительный слой может являться проводящей пастой.

[0015] Согласно вышеуказанному объекту, выемка может пролегать в кольцевой форме на поверхности электродной пластины так, чтобы окружать полупроводниковую микросхему, и заданная область может представлять собой область, окруженную выемкой.

Краткое описание чертежей

[0016] Признаки, преимущества, а также техническая и промышленная значимость иллюстративных вариантов осуществления изобретения будут описаны ниже со ссылкой на сопровождающие чертежи, на которых одинаковые ссылочные позиции обозначают одинаковые элементы, и на которых:

Фиг. 1 представляет собой вид в вертикальном разрезе полупроводникового устройства 10;

Фиг. 2 представляет собой вид в разрезе первой части 14а соединительного слоя 14;

Фиг. 3 представляет собой вид в разрезе второй части 14b соединительного слоя 14;

Фиг. 4 представляет собой вид, иллюстрирующий процесс изготовления полупроводникового устройства 10 (увеличенный вид в разрезе вокруг выемки 20);

Фиг. 5 представляет собой вид, иллюстрирующий процесс изготовления полупроводникового устройства 10 (увеличенный вид в разрезе вокруг выемки 20);

Фиг. 6 представляет собой вид, иллюстрирующий процесс изготовления полупроводникового устройства 10 (увеличенный вид в разрезе вокруг выемки 20);

Фиг. 7 представляет собой вид, иллюстрирующий процесс изготовления в сравнительном примере;

Фиг. 8 представляет собой вид, иллюстрирующий процесс изготовления в модифицированном примере (увеличенный вид в разрезе вокруг выемки 20); и

Фиг. 9 представляет собой вид, иллюстрирующий процесс изготовления в модифицированном примере (увеличенный вид в разрезе вокруг выемки 20).

Подробное описание вариантов осуществления

[0017] Как показано на фиг. 1, полупроводниковое устройство 10 варианта осуществления имеет полупроводниковую микросхему 12, соединительный слой 14 и электродную пластину 16. Полупроводниковое устройство 10 включает в себя элементы проводки, отличные от соединительного слоя 14 и электродной пластины 16 (например, другие электродные пластины и соединительные провода), но они не показаны на фиг. 1.

[0018] Электродная пластина 16 представляет собой проводящую пластину, выполненную из металла. На верхней поверхности электродной пластины 16 выполнена выемка 20. Выемка 20 представляет собой канавку, проходящую в кольцевой форме по верхней поверхности электродной пластины 16. Верхняя поверхность электродной пластины 16 разделена выемкой 20 на центральную часть 22 и внешнюю периферийную часть 24. Центральная часть 22 представляет собой часть, окруженную выемкой 20. Внешняя периферийная часть 24 представляет собой часть, расположенную дальше во внешней периферийной стороне, чем выемка 20.

[0019] Полупроводниковая микросхема 12 включает в себя полупроводниковую подложку, при этом электрод, изолирующий слой и т.д. расположены на поверхности полупроводниковой подложки. Хотя это не показано, нижняя поверхность полупроводниковой микросхемы 12 покрыта электродом. Полупроводниковая микросхема 12 расположена на электродной пластине 16. Внешний периферийный край 12a полупроводниковой микросхемы 12 расположен над выемкой 20. Таким образом, полупроводниковая микросхема 12 расположена на электродной пластине 16 так, что весь внешний периферийный край 12a перекрывает выемку 20, если смотреть на полупроводниковую микросхему 12 и электродную пластину 16 на виде сверху вдоль направления их укладки.

[0020] Соединительный слой 14 расположен между электродной пластиной 16 и полупроводниковой микросхемой 12. Соединительный слой 14 соединен как с электродной пластиной 16, так и с полупроводниковой микросхемой 12 (более конкретно, с электродом, образующим нижнюю поверхность полупроводниковой микросхемы 12). Электродная пластина 16 и полупроводниковая микросхема 12 электрически соединены друг с другом через соединительный слой 14. Соединительный слой 14 соединен с центральной частью 22 электродной пластины 16 и внутренней поверхностью выемки 20 и не контактирует с внешней периферийной частью 24. Соединительный слой 14 соединен со всей площадью нижней поверхности полупроводниковой микросхемы 12. Соединительный слой 14 открыт над выемкой 20 между полупроводниковой микросхемой 12 и электродной пластиной 16. Открытая поверхность соединительного слоя 14 наклонена относительно нижней поверхности полупроводниковой микросхемы 12. Открытая поверхность соединительного слоя 14 смещается в сторону нижней поверхности выемки 20, пролегая от внешнего периферийного края 12a полупроводниковой микросхемы 12 по направлению к внешней периферийной части 24 (то есть, с удалением от центральной части 22). На фиг. 2 и фиг. 3 схематично показаны виды в разрезе соединительного слоя 14. Как показано на фиг. 2 и фиг. 3, соединительный слой 14 имеет структуру, в которой металлические частицы 60 соединены друг с другом. Между металлическими частицами 60 имеется свободное пространство 62. Соединительный слой 14 имеет первую часть 14а и вторую часть 14b. Фиг. 2 представляет собой вид в разрезе первой части 14а в заданном положении, а фиг. 3 показывает вид в разрезе второй части 14b в заданном положении. Термин «пористость» относится к величине свободного пространства 62 на единицу объема. Высокая пористость означает небольшую величину металлических частиц 60 на единицу объема (то есть низкую плотность металлических частиц 60). Пористость увеличивается от первой части 14а ко второй части 14b. Таким образом, средняя пористость первой части 14а ниже средней пористости второй части 14b. Высокопористая вторая часть 14b может с большей вероятностью подвергаться упругой деформации, чем низкопористая первая часть 14а. Как показано на фиг. 1, первая часть 14а расположена между центральной частью 22 электродной пластины 16 и полупроводниковой микросхемой 12, в то время как вторая часть 14b расположена между выемкой 20 электродной пластины 16 и полупроводниковой микросхемой 12.

[0021] Далее будет описан способ изготовления полупроводникового устройства 10. Сначала, как показано на фиг. 4, проводящую пасту 30 наносят на центральную часть 22 верхней поверхности электродной пластины 16. Проводящая паста 30 представляет собой пасту, содержащую растворитель и металлические частицы, диффундированные в растворителе. При этом проводящую пасту 30 наносят на всю площадь центральной части 22. Проводящую пасту 30 не наносят на выемку 20 и внешнюю периферийную часть 24.

[0022] Далее, как показано на фиг. 5, полупроводниковую микросхему 12 помещают на проводящую пасту 30. При этом полупроводниковую микросхему 12 размещают так, что вся верхняя сторона центральной части 22 покрыта полупроводниковой микросхемой 12, а внешний периферийный край 12а полупроводниковой микросхемы 12 находится над выемкой 20.

[0023] Затем блок из электродной пластины 16, проводящей пасты 30 и полупроводниковой микросхемы 12 нагревают с приложением давления к полупроводниковой микросхеме 12 в направлении электродной пластины 16, как показано стрелками 100 на фиг. 5. Давление прикладывается к проводящей пасте 30, когда давление указанным образом прикладывается к полупроводниковой микросхеме 12 в направлении электродной пластины 16. В результате проводящая паста 30 вытекает из положения между полупроводниковой микросхемой 12 и центральной частью 22 во внешнюю сторону, как показано стрелкой 102 на фиг. 5. Вытекающая проводящая паста 30 течет в выемку 20. Таким образом, как показано на фиг. 6, внутренняя поверхность выемки 20 покрывается проводящей пастой 30. Другими словами, проводящая паста 30 входит в контакт с нижней поверхностью и боковой поверхностью выемки 20. Хотя проводящая паста 30 находится в контакте с боковой поверхностью выемки 20 со стороны внешней периферийной части 24, как показано на фиг. 6, проводящая паста 30 не должна обязательно соприкасаться с этой боковой поверхностью. Как показано на фиг. 6, проводящая паста 30, вытекшая во внешнюю сторону из положения между полупроводниковой микросхемой 12 и центральной частью 22, контактирует с частью нижней поверхности полупроводниковой микросхемы 12, которая находится над выемкой 20.

[0024] Нагревание испаряет растворитель из проводящей пасты 30. Кроме того, поскольку проводящая паста 30 нагревается под давлением, то металлические частицы, содержащиеся в проводящей пасте 30, соединяются друг с другом. Таким образом, как показано на фиг. 6, проводящая паста 30 образует соединительный слой 14. При этом проводящая паста 30, находящаяся между центральной частью 22 и полупроводниковой микросхемой 12, нагревается под высоким давлением, так что эта часть проводящей пасты 30 образует низкопористую первую часть 14а. С другой стороны, проводящая паста 30, находящаяся между выемкой 20 и полупроводниковой микросхемой 12, нагревается при относительно низком давлении, так что эта часть проводящей пасты 30 образует высокопористую вторую часть 14b. Проводящая паста 30 течет в выемку 20, как показано стрелкой 102, так что поверхность соединительного слоя 14, открытая между полупроводниковой микросхемой 12 и электродной пластиной 16, принимает форму, которая наклонена так, чтобы смещаться в сторону нижней поверхности выемки 20, пролегая от внешнего периферийного края 12а полупроводниковой микросхемы 12 к внешней периферийной части 24.

[0025] После этого, когда блок из электродной пластины 16, проводящей пасты 30 и полупроводниковой микросхемы 12 охлаждают до комнатной температуры, каждый элемент из электродной пластины 16, проводящей пасты 30 и полупроводниковой микросхемы 12 сжимается. Величина усадки у электродной пластины 16, соединительного слоя 14 и полупроводниковой микросхемы 12 является различной из-за разницы в коэффициенте линейного расширения. Соответственно, на полупроводниковую микросхему 12 воздействует тепловое напряжение. Во внешней периферийной части (т.е., части вблизи внешнего периферийного края 12а) полупроводниковой микросхемы 12 может возникнуть более высокое тепловое напряжение, чем в центральной части полупроводниковой микросхемы 12. Однако согласно этому способу изготовления, с внешней периферийной частью полупроводниковой микросхемы 12 соединяется высокопористая вторая часть 14b соединительного слоя 14. Обладая высокой пористостью, вторая часть 14b более способна претерпеть упругую деформацию. Упругая деформация второй части 14b снимает тепловое напряжение, воздействующее на внешнюю периферийную часть полупроводниковой микросхемы 12. Таким образом, согласно этому способу изготовления, можно повысить надежность полупроводниковой микросхемы 12. Кроме того, центральная часть полупроводниковой микросхемы 12, в которой вероятно может возникнуть высокое тепловое напряжение, прочно соединяется с электродной пластиной 16 с помощью первой части 14а соединительного слоя 14. Таким образом, между полупроводниковой микросхемой 12 и электродной пластиной 16 может быть обеспечена достаточно высокая прочность соединения.

[0026] На фиг. 7 показан случай, в котором электродная пластина 16 и полупроводниковая микросхема 12 соединены через соединительный слой 14 (то есть проводящую пасту 30), когда верхняя поверхность электродной пластины 16 является плоской (то есть, выемки 20 не предусмотрено). Если верхняя поверхность электродной пластины 16 является плоской, то проводящая паста 30, вытекающая под давлением из области между полупроводниковой микросхемой 12 и электродной пластиной 16 во внешнюю сторону, набухает вверх в положении, прилегающем к внешнему периферийному краю 12а полупроводниковой микросхемы 12 и, таким образом, образует выступ 120. Выступ 120 может соприкасаться с внешним периферийным краем 12а полупроводниковой микросхемы 12, что может привести к короткому замыканию элементов внутри полупроводниковой микросхемы 12. Кроме того, если образуется выступ 120, то в выступе 120 из-за напряжения могут возникать трещины. Если трещина, возникшая в выступе 120, растет до области между полупроводниковой микросхемой 12 и электродной пластиной 16, например, то электрическое сопротивление соединительного слоя 14 возрастает. Напротив, в полупроводниковом устройстве 10, изготовленном согласно вышеизложенному способу изготовления, поверхность соединительного слоя 14 имеет форму, которая наклонена так, чтобы смещаться в направлении нижней поверхности выемки 20, пролегая от внешнего периферийного края 12а полупроводниковой микросхемы 12 к внешней периферийной части 24. При данной форме соединительного слоя 14 может быть предотвращен контакт соединительного слоя 14 с внешним периферийным краем 12а полупроводниковой микросхемы 12. Таким образом, можно избежать короткого замыкания элементов внутри полупроводниковой микросхемы 12. Более того, менее вероятным является возникновение трещин в соединительном слое 14, имеющем такую форму, что позволяет избежать повышения электрического сопротивления соединительного слоя 14.

[0027] Общеизвестна технология соединения полупроводниковой микросхемы с электродной пластиной с использованием припоя. Эта технология иногда включает в себя образование выемки на поверхности электродной пластины, чтобы удерживать припой от чрезмерного смачивания и распространения по поверхности электродной пластины. Такая выемка обычно расположена дальше во внешнюю сторону, чем внешний периферийный край полупроводниковой микросхемы. Напротив, выемка для проводящей пасты, раскрытая в настоящем описании, используется таким образом, что внешний периферийный край полупроводниковой микросхемы расположен над этой выемкой. Таким образом, использование выемки позволяет увеличить площадь проводящей пасты, поскольку проводящая паста может втекать в выемку. Выемка, раскрытая в настоящем описании, имеет также дополнительную функцию в виде удерживания проводящей пасты от распространения от заданной области во внешнюю сторону за пределы выемки.

[0028] В вышеупомянутом способе изготовления, количество проводящей пасты 30, втекающей в выемку 20, может стать чрезмерно большим из-за вариаций при производстве. Если такое явление имеет место, на этапе затвердевания проводящей пасты 30 над выемкой 20 может быть установлена оправка 80, как показано на фиг. 8 и фиг. 9. Оправка 80 расположена близко к внешнему периферийному краю 12а полупроводниковой микросхемы 12 и удерживает проводящую пасту 30 от набухания вверх. Между оправкой 80 и внешней периферийной частью 24 электродной пластины 16 имеется зазор, позволяющий проводящей пасте 30 протекать к внешней периферийной части 24. Когда большое количество проводящей пасты 30 втекает в выемку 20, проводящая паста 30 вытекает из выемки 20 на верхнюю сторону внешней периферийной части 24, как показано стрелкой 104 на фиг. 8 и фиг. 9. Таким образом, предотвращается набухание проводящей пасты 30 вверх в выемке 20. Соответственно, в этом случае поверхность части соединительного слоя 14, которая примыкает к внешнему периферийному краю 12а полупроводниковой микросхемы 12, принимает форму, смещающуюся по направлению к нижней поверхности выемки 20, пролегая в направлении внешней периферийной части 24. Таким образом, можно удерживать соединительный слой 14 от вхождения в контакт с внешним периферийным краем 12а, а также избежать возникновения трещин, возникающих в соединительном слое 14.

1. Способ изготовления полупроводникового устройства, при этом способ изготовления включает в себя:

(a) нанесение проводящей пасты, содержащей металлические частицы, на заданную область в электродной пластине, содержащей выемку на поверхности электродной пластины, причем заданная область примыкает к выемке;

(b) размещение полупроводниковой микросхемы на проводящей пасте таким образом, чтобы внешний периферийный край полупроводниковой микросхемы располагался над выемкой;

(c) размещение оправки в положении над выемкой и вблизи внешнего периферийного края полупроводниковой микросхемы с обеспечением зазора между оправкой и внешней периферийной частью электродной пластины, которая представляет собой часть, расположенную дальше во внешней периферийной стороне, чем выемка; и

(d) затвердевание проводящей пасты путем нагревания проводящей пасты при приложении давления к полупроводниковой микросхеме в направлении электродной пластины.

2. Способ изготовления полупроводникового устройства по п. 1, в котором

на этапе (а) проводящую пасту не наносят на нижнюю поверхность выемки и

на этапе (d) проводящая паста, вытекшая из заданной области в выемку, вступает в контакт с нижней поверхностью выемки.



 

Похожие патенты:

Узел (20) датчика давления технологической текучей среды включает в себя датчик (30) давления, выполненный с возможностью измерения давления технологической текучей среды.

Изобретение относится к области техники жидкокристаллических дисплеев, в частности к контролю конструкции с МДП-структурой (структурой металл - диэлектрик - полупроводник) в ТПТ (тонкопленочных транзисторах) и его системе.

Изобретение относится к области полупроводниковой микроэлектроники, а именно к технологии сборки полупроводниковых приборов, и может быть использовано для гибридизации кристаллов БИС считывания и матрицы фоточувствительных элементов (МФЧЭ) методом перевернутого монтажа.

Изобретение относится к области микро- и наноэлектроники, а именно к определению физических параметров полупроводниковых приборов, в частности к определению температурной зависимости распределения потенциала в двухзатворных симметричных полностью обедненных полевых транзисторах со структурой «кремний на изоляторе» с гауссовым вертикальным профилем легирования рабочей области, и может быть использовано при моделировании и разработке интегральных схем в специализированных программах.

Изобретение относится к физике полупроводников. Его применение при определении параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике позволяет исследовать каскадно возбуждаемый тип ловушек в более широком классе полупроводниковых материалов, начиная с кристаллических и заканчивая органическими полупроводниками и нанокристаллами, и обеспечивает расширенные функциональные возможности за счет определения не только характеристик ловушек, но и энергетической плотности их состояний.
Изобретение относится к приборам и методам экспериментальной физики и предназначено для исследования дефектной структуры кристаллов. Способ имеет преимущество по сравнению с методом рентгенодифракционной топографии: нет необходимости разрушать исследуемый образец, можно осуществлять экспрессный контроль больших партий монокристаллов.

Изобретение относится к области оптико-электронного приборостроения и касается способа измерения пороговой разности температур инфракрасного матричного фотоприемного устройства.

Изобретение относится к печатной плате, в частности, для сильноточного электронного модуля. Технический результат - достижение непосредственного электрического контакта проводящих поверхностей или соответственно токопроводящих дорожек с самой подложкой и использование подложки в качестве электрического проводника.

Изобретение относится к способам монтажа микросборок в корпусах электронных модулей и может быть использовано при осуществлении сборки сверхвысокочастотных (СВЧ) модулей активных фазированных антенных решеток (АФАР).
Изобретение относится к области изготовления полупроводниковых приборов путем бесфлюсовой пайки в защитной среде и может быть использовано при сборке кристаллов в корпуса силовых и усилительных приборов.

Изобретение относится к радиоэлектронике и может быть использовано при изготовлении печатных плат, применяемых при конструировании радиоэлектронной техники. Технический результат - повышение степени интеграции и снижение массогабаритных показателей ИМС.

Изобретение относится к приборостроению, а именно к технологии производства многокристальных модулей, микросборок и модулей с внутренним монтажом компонентов. Технический результат - снижение массы и габаритов, уменьшение трудоемкости и повышение надежности электронных узлов.
Изобретение относится к микроэлектронике и может быть использовано в производстве полупроводниковых приборов и интегральных схем. Изобретение обеспечивает уменьшение температуры посадки кристалла на основание корпуса, повышение надежности контакта кристалла с основанием корпуса и применение недорогостоящих материалов при сохранении стабильности процесса.
Изобретение относится к микроэлектронике и может быть использовано в производстве полупроводниковых приборов и интегральных схем. Изобретение обеспечивает повышение надежности контакта кристалла с основанием корпуса и стабильности процесса присоединения.

Изобретение относится к электронной технике. .

Изобретение относится к силовой полупроводниковой технике, в частности к технологии сборки многокристальных полупроводниковых приборов с прижимным контактом. .
Изобретение относится к полупроводниковой, оптоэлектронной технологии, квантовой электронике. .

Изобретение относится к области изготовления полупроводниковых приборов. .
Наверх