Способ стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке

Изобретение относится к управлению движением космических аппаратов. В способе стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке облучают объект пучком ускоренных ионов, регистрируют изображение объекта на плоском экране, управляют направлением ионного пучка до достижения заданного состояния движения объекта. Перед началом облучения выбирают максимально удаленные друг от друга реперные точки на периметре экранного изображения объекта, направление ионного пучка варьируют так, чтобы на экране регистратора ожидаемое положение максимума потока ускоренных ионов на изображении поверхности облучаемого объекта перемещалось по отрезку, соединяющему выбранные реперные точки. В случае появления новых пар реперных точек на периметре экранного изображения объекта, расстояние между которыми превышает длину контролируемого отрезка, управление ионным пучком выполняют в прежнем режиме с заменой контролируемой пары реперных точек вновь установленными. Техническим результатом изобретения является обеспечение стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке.

 

Изобретение относится к области управления движением космических аппаратов (КА) и может быть использовано при проведении операций орбитального обслуживания, в том числе, операций по удалению крупногабаритных фрагментов космического мусора из зоны рабочих орбит в зону захоронения бесконтактным методом.

Известно защищенное патентом изобретение - аналог: заявка №4542963/11, МПК B64G 1/24, 1991 год «Система стабилизации космического аппарата» (Гришин В.Н., Дубчак B.C., Климов В.А., Охапкин В.А., Папков О.В.). Система стабилизации КА содержит каналы управления по тангажу и рысканью из последовательно соединенных датчика отклонения углового ускорения и угловой скорости, суммирующего усилителя и рулевой машинки, датчика отклонения линейного ускорения и линейной скорости, двигательной установки, камера сгорания которой установлена с возможностью линейного перемещения вдоль поперечной оси КА. Данная система обеспечивает автономное управление КА безотносительно его движения по сравнению с другими космическими объектами и поэтому является неэффективной для проведения операций орбитального обслуживания.

Известно защищенное патентом изобретение - аналог: заявка №2012125987/11, МПК B64G 1/24, B64G 1/26, 2010 год «Стабилизация движения неустойчивых фрагментов космического мусора» (Поулос Деннис, США). Предложенный способ относится к управлению движением космических объектов и обеспечивает стабилизацию относительного движения фрагментов космического мусора (вокруг собственного центра масс). Способ стабилизации движения указанных фрагментов включает приложение силы к фрагменту в определенных расчетных точках. Силу, воздействующую на фрагмент, создают с использованием пневматического действия газового факела, генерируемого на борту находящегося рядом КА. Газовый факел может создаваться устройствами типа ракетных двигателей разного рода. При этом возможно одновременное изменение орбиты фрагмента космического мусора. К недостаткам способа следует отнести сложность позиционирования ракетных двигателей КА относительно фрагмента космического мусора, а также необходимость компенсации импульса, создаваемого этими ракетными двигателями, для удержания КА в требуемой орбитальной позиции.

Известно защищенное патентом изобретение - аналог: заявка №2012136164/11, МПК B64G 1/64, 2012 год «Способ стыковки космических аппаратов и устройство для его реализации» (Трушляков В.И., Юткин Е.А., Макаров Ю.Н., Олейников И.И., Шатров Я.Т.). Согласно способу выполняют стыковку двух КА, один из которых пассивный (ПКА), а другой, сближающийся с ним - активный (АКА). Способ включает использование самонаводящегося космического микробуксира (КМБ) для доставки троса, выпускаемого с АКА при сближении с ПКА на минимальное расстояние и оснащенного стыковочным штырем. Далее выполняют стягивание ПКА и АКА с помощью троса. Способ отличается тем, что в качестве устройства зацепления на ПКА используют сопло маршевого двигателя, вводят стыковочный штырь в камеру двигателя и при проходе критического сечения двигателя, достигнув передней стенки камеры сгорания, последовательно задействуют устройства фиксации и стягивания, установленные на стыковочном штыре. В процессе стягивания синхронизируют угловые скорости связки (КМБ+ПКА) и АКА, совмещают продольные оси АКА и связки (КМБ+ПКА) с направлением линии, соединяющей их центры масс, осуществляют стабилизацию углового положения, с помощью продольных ускорений, развиваемых двигателями АКА и КМБ, осуществляют снижение натяжения троса до минимального. После касания связки (КМБ+ПКА) с посадочным местом на АКА осуществляют фиксацию связки с помощью системы, установленной на АКА. Недостатком способа является механическое повреждение двигательной установки ПКА устройством фиксации, что исключает возможность дальнейшего использования ПКА при проведении операций орбитального обслуживания.

Известно защищенное патентом изобретение - аналог: патент №2603301, МПК В64G 1/64, 2016 год «Способ синхронизации угловых скоростей активного космического аппарата с пассивным космическим аппаратом» (Яковлев М.В., Яковлева Т.М., Яковлев Д.М.), согласно которому управляют угловыми скоростями активного космического аппарата по данным наблюдения пассивного космического аппарата, причем наблюдают фигуру треугольника, вершинами которого являются изображения трех отражающих элементов, установленных на пассивном космическом аппарате и расположенных на максимальном удалении от его центра тяжести, а управление угловыми скоростями выполняют до момента регистрации неподвижной фигуры треугольника. Недостатком способа - прототипа является необходимость предварительной установки отражающих элементов на пассивном космическом аппарате.

Известно защищенное патентом изобретение - аналог: патент №2603301, МПК B64G 1/26 B64G 1/40, 2014 год «Способ бесконтактной транспортировки космических объектов» (Обухов В.А., Петухов В.Г., Покрышкин А.И., Попов ГА.), согласно которому выводят на исходную расчетную орбиту космический аппарат (КА) с ионной пушкой с газоразрядной камерой с плоским индуктором для возбуждения индукционного высокочастотного электрического разряда, двигательной установкой в виде электрического ракетного двигателя (ЭРД), шарнирным механизмом со штангами и шарнирами или виде карданного шарнира для перемещения ЭРД в плоскости, ортогональной оси, проходящей через центр масс КА в направлении вектора тяги ионной пушки, сближают и ориентируют КА относительно транспортируемого КО с помощью изменения направления вектора тяги и точки приложения вектора тяги перемещаемого ЭРД, измеряют координаты транспортируемого КО и расстояние между КА и транспортируемым КО, воздействуют на поверхность транспортируемого КО квазинейтральным ионным пучком с помощью ионной пушки, производят динамическую компенсацию возмущающих сил и моментов, действующих на КА, производят динамическую ориентацию КА относительно транспортируемого КО, перемещают транспортируемый КО на орбиту захоронения, осуществляют перемещение КА по спиральной траектории на орбиту следующего транспортируемого КО. Недостатком способа - прототипа является отсутствие мероприятий, исключающих возможность отклонения транспортируемого бесконтактным способом космического объекта от заданной траектории движения.

Целью предполагаемого изобретения является стабилизация углового движения некооперируемого объекта при бесконтактной транспортировке.

Указанная цель достигается в заявляемом способе стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке, согласно которому облучают объект пучком ускоренных ионов, регистрируют изображение объекта на плоском экране, управляют направлением ионного пучка до достижения заданного состояния движения объекта, причем перед началом облучения выбирают максимально удаленные друг от друга реперные точки на периметре экранного изображения объекта, а направление ионного пучка выбирают из условия поддержания максимального расстояния между реперными точками.

Обоснование практической реализуемости заявляемого способа заключается в следующем. Направлением ионного пучка варьируют так, чтобы на экране регистратора ожидаемое положение максимума потока ускоренных ионов на изображении поверхности облучаемого объекта перемещалось по отрезку, соединяющему выделенные реперные точки на периметре изображения этого объекта. Ожидаемое положение максимума потока ускоренных ионов на изображении поверхности облучаемого объекта определяется по результатам измерений геометрических характеристик транспортируемого объекта и расстояния до него с борта сервисного космического аппарата, оборудованного ионной пушкой, с учетом известных данных о направлении действия ионного пучка относительно сервисного космического аппарата. Угловое движение транспортируемого объекта приводит к изменению длины контролируемого отрезка. Перемещением ионного пучка вдоль контролируемого отрезка минимизируют скорость изменения длины контролируемого отрезка вплоть до момента, когда его длина будет оставаться постоянной. При этом угловое движение транспортируемого объекта приобретает характер вращения вокруг оси, совпадающей с контролируемым отрезком, или вокруг оси, совпадающей с направлением действия ионного пучка. Также возможно одновременное вращение транспортируемого объекта вокруг названных выше осей. Во всех перечисленных случаях космический объект, транспортируемый бесконтактным способом, не отклоняется от заданной траектории движения.

В процессе стабилизации углового движения некооперируемого объекта при его транспортировке изложенным способом возможно появление новых пар реперных точек на периметре экранного изображения объекта, расстояние между которыми превышает длину контролируемого отрезка. При этом управление ионным пучком выполняют в прежнем режиме с заменой контролируемой пары реперных точек вновь установленными реперными точками.

Другая особенность управления ионным пучком связана с возможностью ускорения вращения транспортируемого объекта вокруг означенных выше осей, что в случае возникновения такого эффекта свидетельствует о снижении затрат энергии пучка на транспортировку объекта. Парирование ситуации реализуется путем изменения ориентации ионного пучка в направлениях, ортогональных осям вращения.

Таким образом, техническая возможность реализации заявляемого способа стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке не вызывает сомнений.

Способ стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке, согласно которому облучают объект пучком ускоренных ионов, регистрируют изображение объекта на плоском экране, управляют направлением ионного пучка до достижения заданного состояния движения объекта, причем перед началом облучения выбирают максимально удаленные друг от друга реперные точки на периметре экранного изображения объекта, а направление ионного пучка варьируют так, чтобы на экране регистратора ожидаемое положение максимума потока ускоренных ионов на изображении поверхности облучаемого объекта перемещалось по отрезку, соединяющему выбранные реперные точки, а в случае появления новых пар реперных точек на периметре экранного изображения объекта, расстояние между которыми превышает длину контролируемого отрезка, управление ионным пучком выполняют в прежнем режиме с заменой контролируемой пары реперных точек вновь установленными реперными точками.



 

Похожие патенты:

Изобретение относится к области управления положением объектов в космическом пространстве. Способ перемещения объектов космического мусора с постепенным использованием его вещества в качестве рабочего тела реактивного движителя космическим аппаратом (КА), оснащенным лазерной двигательной установкой и устройством, обеспечивающим сканирование поверхности произвольной формы.

Изобретение относится к управлению относительным движением космического аппарата (КА). Разгрузка управляющих двигателей-маховиков (ДМ) в выбранном канале ориентации осуществляется по двухконтурной схеме.

Группа изобретений относится к средствам и методам выведения, работы на орбите и увода с орбиты автоматических полезных нагрузок (ПН) с помощью беспилотного ракетно-космического комплекса (РКК).

Изобретение относится к ракетно-космической технике и касается отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) при их движении по траектории спуска. Спуск ОЧ РН на жидких компонентах топлива в заданный район падения основан на стабилизации ОЧ, ориентации и управляемом движении ОЧ за счет энергетики, заключенной в невыработанных остатках компонентов жидкого топлива на основе их газификации и подачи в двигательную установку.

Группа изобретений относится к ракетно-космической технике. Способ спуска отработанной части (ОЧ) ступени РКН на жидких компонентах ракетного топлива в заданный район падения основан на стабилизации и ориентации ОЧ за счет энергетики невыработанных остатков жидких компонентов ракетного топлива на основе их газификации и подачи в сопла сброса газореактивной системы.

Изобретение относится к межорбитальным маневрам космических аппаратов (КА). Способ включает выведение КА на переходную орбиту с высотой апогея больше высоты геостационарной орбиты (ГСО) и высотой перигея ниже ГСО.

Изобретение относится к управлению работой транспортного космического корабля (ТКК), совершающего рейсы между орбитальной космической станцией (ОКС), находящейся вблизи планеты с атмосферой, и базовой станцией, расположенной, например на Луне.

Группа изобретений относится к управлению движением нежёсткого летательного аппарата (1) с помощью двигателя (2). Пилотирование осуществляется системой управления с измерительным средством (3А), расположенным вблизи заднего конца (1R) аппарата.

Изобретение относится к области управления движением космических аппаратов (КА) с помощью многосопловой реактивной двигательной установки (ДУ). Способ позволяет проводить коррекцию орбиты КА путем приложения результирующего вектора тяги ДУ к его корпусу и включает определение коэффициентов дросселирования для расчета тяги каждого из трех и более сопел двигателя.

Изобретение относится к перелётам транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, а другая - либо на орбите другого небесного тела (напр., Луны), либо вблизи точек либрации (напр., L1 или L2 системы Земля - Луна).
Наверх