Цифровой бесконтактный многоканальный телеметрический комплекс

Изобретение относится к обеспечению испытаний газотурбинных двигателей, в частности отладки лопаточного аппарата компрессоров и турбин, а также может быть использовано в практике измерений деформаций, температур, вибраций на любых вращающихся и подвижных частях агрегатов. Цифровой бесконтактный многоканальный телеметрический комплекс состоит из измерительного блока, статорного блока, блока приема и регистрации, питания и средств визуализации. Причём измерительный блок выполнен в виде компактных модулей на основе 8-слойных гибких плат, залитых высокопрочными компаундами, работающих в диапазоне температур от минус 50 до +125 градусов и выдерживающих центростремительное ускорение до 40000 g и вибрации до 150 g, причем каждый измерительный модуль имеет дублированные высокочастотные каналы передачи данных, а антенная система позволяет одновременное подключение 16 передающих устройств с суммарной пропускной способностью на комплекс не менее 200 МБит/сек, с динамическим диапазоном каналов тензометрирования до 60 кГц и с неравномерностью амплитудно-частотной характеристики не более 0,5 дБ, дополнительно снабжен встроенной системой самодиагностики состояния датчиков и кабельных линий, а также возможностью переключения на резервные группы датчиков, при этом роторный и статорный блоки оборудованы специальными экранированными антенными системами для использования маломощных высокочастотных передатчиков и систем индукционного питания при обеспечении электромагнитной совместимости комплекса. Устройство значительно расширило возможности регистрации параметров на труднодоступных вращающихся и подвижных узлах в сложных условиях эксплуатации. Заявляемое устройство может быть базовым при оснащении испытательных стендов газотурбинных двигателей, газотурбинных установок, бортовых систем измерений. 1 ил.

 

Изобретение относится к обеспечению испытаний газотурбинных двигателей, в частности, отладки лопаточного аппарата компрессоров и турбин, а также может быть использовано в практике измерений деформаций, температур, вибраций на любых вращающихся и подвижных частях агрегатов.

Известен телеметрический передатчик для испытательных технологий на вращающихся узлах изделий, обеспечивающий бесконтактную передачу данных и индукционное питание со встроенной диагностикой ротора (Системы телеметрии Эл-Скада).

Известна также контрольно-измерительная система КИС 1.1, предназначенная для измерения сигналов с тензорезисторных датчиков, установленных на вращающихся лопатках в роторной части авиационного турбореактивного двигателя, их преобразования и передачи на автоматизированное место оператора (Госреестр средств измерений №32248-06) и включающая:

- Роторную часть: тензорезисторы, блок УСП 1.1 (инструментальный усилитель, фильтр низкой частоты, многоканальные аналого-цифровые преобразователи, устройства управления), инфракрасный передатчик;

- Статорную часть: блок ПУ 1.1 (прием данных, формирование кадров, интерфейс RS-485, индукционная накачка питания), измерительные модули;

- Автоматизированное рабочее место.

Данное техническое решение является наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом). Однако данная система имеет ограниченное число каналов регистрации, недостаточный набор подключаемых датчиков, узкую полосу измеряемых сигналов и не может обеспечить всю совокупность измерений при проведении испытаний.

Технический результат изобретения направлен на повышение точности измерения параметров вращающихся узлов изделий, увеличение информативности испытаний, снижение влияния помех и сокращение затрат за счет уменьшения количества проводимых испытаний.

Цифровой бесконтактный многоканальный телеметрический комплекс состоит из измерительного блока, статорного блока, блока приема и регистрации, питания и средств визуализации. Причём, измерительный блок выполнен в виде компактных модулей, на основе 8-ми слойных гибких плат, залитых высокопрочными компаундами, работающих в диапазоне температур от минус 50 до +125 градусов и выдерживающих центростремительное ускорение до 40000 g и вибрации до 150 g. В свою очередь, каждый измерительный модуль имеет дублированные высокочастотные каналы передачи данных, а антенная система позволяет одновременное подключение 16 передающих устройств с суммарной пропускной способностью на комплекс не менее 200 МБит/сек., с динамическим диапазоном каналов тензометрирования до 60 кГц и с неравномерностью амплитудно-частотной характеристики не более 0,5 дБ. Дополнительно измерительный блок снабжен встроенной системой самодиагностики состояния датчиков и кабельных линий, а также возможностью переключения на резервные группы датчиков, при этом измерительный и статорный блоки оборудованы специальными экранированными антенными системами для использования маломощных высокочастотных передатчиков и систем индукционного питания при обеспечении электромагнитной совместимости комплекса.

Технический результат достигается использованием компактных (малогабаритных) измерительных модулей для работы в ограниченном пространстве испытываемого изделия, что упрощает их размещение внутри объема работающего двигателя, исключает дисбаланс на высоких оборотах и позволяет использовать большее число измерительных преобразователей, а также применением дополнительных измерительных трактов, обеспечивающих возможность подключения других видов датчиков (температуры, давления), что значительно расширяет функциональные и диагностические возможности комплекса. Конструкция телеметрического комплекса имеет модульную структуру, позволяющую комбинировать количеством и типами подключаемых преобразователей. Измерительные тензометрические тракты оснащены 24-битными аналого-цифровыми преобразователями, возможностью переключения диапазонов измерений и высокой полосой пропускания (до 60 кГц с неравномерностью амплитудно-частотной характеристики не более 0,5 дБ), что позволяет увеличить точность получаемых данных и зарегистрировать значительно более быстрые процессы. Высокоскоростные каналы передачи данных (не менее 200 МБит/сек) позволяют передать полный объем информации, полученный в ходе испытаний.

Новизна изобретения заключается в расширении функциональных возможностей комплекса посредством: увеличения числа измерительных каналов без увеличения занимаемого объема, более высокой полосы пропускания каналов, подключения дополнительных типов датчиков и резервных групп датчиков, изменения режимов работы измерительных модулей по ходу испытаний, дублирования каналов связи. Впервые предложено использование компактных полнофункциональных измерительных модулей со встроенной диагностикой и высокоскоростным резервированным каналом передачи данных и стабилизаторов питания, расположенных непосредственно на вращающихся узлах и предназначенных для работы в экстремальных условиях эксплуатации (внутри авиационного двигателя в режиме полета, роторная часть вращается с высокой скоростью, при которой центростремительное ускорение, действующее на устройства может достигать 40 000g, вибрации 150 g, а температура в месте расположения устройств меняется в диапазоне от -50 до +125 градусов).

Цифровой бесконтактный многоканальный телеметрический комплекс представлен на рис. 1, где обозначено: 1 - роторный блок, содержащий ротор антенной системы, в котором конструктивно закреплены высоко-частотные антенны передачи данных и приемные антенны индукционного питания. С ротором антенной системы жестко закреплен держатель модулей. В держателе модулей размещены контактные колодки антенн и до 8 измерительных модулей и стабилизаторов питания. Соединение модулей, стабилизаторов и антенн выполняется объединительной платой, также содержащей разъем для подключения датчиков. Все части блока жестко закрепляются на валу испытываемого изделия; 2 - статорный блок с антенной системой, содержащий держатель, в котором конструктивно закреплены принимающая высокочастотная антенна и передающая антенна для индукционной накачки питания. Статор антенной системы закрепляется на неподвижной части корпуса испытываемого изделия; 3 - блок приема, питания и средств визуализации, в который входят: шасси для установки модулей управления и демодуляции, усилители мощности сигналов, согласователь, рабочее место оператора.

Комплекс работает следующим образом. Измерительные модули получают данные с датчиков, обрабатывают их, фильтруют и передают в цифровом виде по высокочастотному каналу на передающие антенны ротора, при этом канал передачи данных каждого измерительного модуля имеет резервирование. Данные от каждого измерительного модуля принимаются отдельным модулем-приемником, также имеющим резервирование канала связи. Программное обеспечение управляет работой измерительных модулей, обеспечивает непрерывную запись данных с возможностью обработки информации в темпе проведения испытаний. Специальный протокол обеспечивает избыточность для восстановления данных при работе в условиях помех и гарантирует их достоверность.

Для достижения необходимой компактности и прочности применены специальные технологии монтажа на 8-ми слойных гибких платах и заливки высокопрочными компаундами, что упрощает размещение измерительной системы внутри работающего изделия, а минимальное расстояние от датчиков до измерительной системы снижает влияние помех и наводок, что позволяет получить более точные данные. Каждый измерительный модуль имеет дублированные высокочастотные каналы передачи данных, что в совокупности с антенной системой позволяет подключить одновременно до 16 передающих устройств с суммарной пропускной способностью на комплекс не менее 200 МБит/сек., что позволяет значительно увеличить поток передаваемых данных и использовать более 150 различных измерительных каналов с широким динамическим диапазоном каналов тензометрирования (до 60 кГц, с неравномерностью амплитудно-частотной характеристикой (АЧХ) не более 0,5 дБ). Это позволяет получить все необходимые данные при минимальном количестве испытаний (уменьшается число сборок/разборок изделия для перемонтажа датчиков), а также зарегистрировать высоко динамические процессы во всем необходимом диапазоне частот.

Измерительный блок снабжен встроенной системой самодиагностики и диагностики состояния датчиков и кабельных линий, а также возможностью переключения на резервные группы датчиков при обнаружении повреждений, что позволяет значительно снизить затраты на повторные испытания, вызванные обрывами и замыканиями датчиков, неизбежно возникающими в процессе испытаний в экстремальных условиях.

Устройство значительно расширило возможности регистрации параметров на труднодоступных вращающихся и подвижных узлах в сложных условиях эксплуатации. Заявляемое устройство может быть базовым при оснащении испытательных стендов газотурбинных двигателей, газотурбинных установок, бортовых систем измерений.

Цифровой бесконтактный многоканальный телеметрический комплекс, состоящий из измерительного блока, статорного блока, блока приема и регистрации, питания и средств визуализации, отличающийся тем, что измерительный блок выполнен в виде компактных модулей на основе 8-слойных гибких плат, залитых высокопрочными компаундами, работающих в диапазоне температур от минус 50 до +125 градусов и выдерживающих центростремительное ускорение до 40000 g и вибрации до 150 g, причем каждый измерительный модуль имеет дублированные высокочастотные каналы передачи данных, а антенная система позволяет одновременное подключение 16 передающих устройств с суммарной пропускной способностью на комплекс не менее 200 МБит/сек, с динамическим диапазоном каналов тензометрирования до 60 кГц и с неравномерностью амплитудно-частотной характеристики не более 0,5 дБ, дополнительно снабжен встроенной системой самодиагностики состояния датчиков и кабельных линий, а также возможностью переключения на резервные группы датчиков, при этом измерительный и статорный блоки оборудованы специальными экранированными антенными системами для использования маломощных высокочастотных передатчиков и систем индукционного питания при обеспечении электромагнитной совместимости комплекса.



 

Похожие патенты:

Изобретение относится к области контроля технического состояния газотурбинных двигателей (ГТД), а именно к способу вибродиагностирования газотурбинного двигателя.

Изобретение может быть использовано в двигателях внутреннего сгорания транспортных средств. Способ выявления ухудшения характеристик датчика выхлопных газов двигателя заключается в том, что измеряют соответственные концентрации множества составляющих выхлопных газов с помощью газоанализатора, принимающего поток выхлопных газов из двигателя, и категоризируют каждую составляющую или в группу окислителей, или в группу восстановителей.

Объектом изобретения является способ мониторинга лопаточного колеса (22) авиационного двигателя, содержащий: считывание по меньшей мере одного временного сигнала, связанного с моментами прохождения лопаток (23) лопаточного колеса перед датчиком (21); определение текущей фазы полета летательного аппарата; при этом для каждого полета из серии полетов летательного аппарата приводят в соответствие по меньшей мере часть каждого временного сигнала с заранее определенной фазой полета; и для каждой лопатки (23), для каждого полета и для каждой заранее определенной фазы полета измеряют среднее положение (24С) вершины лопатки, называемое положением равновесия.

Предложены способ и датчик для обнаружения твердых частиц в отработавших газах двигателя внутреннего сгорания. Датчик твердых частиц содержит наружную неперфорированную трубку с множеством отрицательных электродов на протяжении внутренней поверхности; центральный перфорированный элемент с множеством положительных электродов на протяжении наружной поверхности указанного центрального элемента.

Группа изобретений относится к способу, аппаратуре и системе для оценки нормальности или ненормальности измеренного датчиком физического параметра устройства. Для оценки контрольные значения для рабочего параметра устройства сохраняют в средствах хранения данных, при помощи средств обработки данных вычисляют оценочное значение параметра определенным образом, вычисляют соответствующую погрешность, вычисляют оценочное значение дисперсии физического параметра для значения рабочего параметра, вычисляют вклад аномалии измеренного значения, сравнивают вклад аномалии измеренного значения с порогом, при превышении порога отображают измерение как ненормальное на интерфейсных средствах.

Изобретение относится к энергетике, в частности к способам испытаний турбин. Способ газодинамических испытаний малоразмерных турбин включает изготовление одного или нескольких альтернативных вариантов испытываемой турбины, поочередную установку их на испытательном стенде, создание эквивалентных натурным условий работы - характерного давления по критериям Маха и Рейнольдса.

Изобретение может быть использовано в системах очистки отработавших газов двигателей внутреннего сгорания. Способ для выпускной системы двигателя.

Группа изобретений относится к инструменту валидации системы мониторинга агрегата авиационного двигателя, системе мониторинга и способу валидации системы мониторинга.

Изобретение относится к области испытаний ракетных двигателей малой тяги. Устройство для высотных испытаний ракетных двигателей выполнено с кормовым диффузором для обеспечения безотрывного течения продуктов сгорания в сопле ракетного двигателя при испытаниях и включает две вакуумные камеры и две вакуумные задвижки.

Изобретение относится к авиадвигателестроению, а именно к способам испытаний газотурбинных двигателей (ГТД). Способ испытания ГТД включает приведение значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части газотурбинного двигателя при изменении атмосферных условий.

Заявляемое изобретение относится к областям техники, связанным с испытаниями электрореактивных двигателей с высоким удельным импульсом, например стационарных плазменных и ионных двигателей. Способ снижения интенсивности эффекта распыления материала в вакуумной камере при проведении огневых испытаний электрореактивных двигателей заключается в защите поверхностей вакуумной камеры охлаждаемыми и неохлаждаемыми конструкционными элементами, выполненными с использованием защитных материалов. Перед проведением испытаний используют математическую модель процесса огневых испытаний, причем, меняя параметры модели, определяют схему наиболее оптимальной расстановки объектов испытаний и защитных конструкционных элементов для сведения к минимуму массы напыляемого материала за единицу времени на единицу площади в заданных точках вакуумной камеры. В вакуумную камеру устанавливают датчики, обеспечивающие за счет изменения их оптических и (или) электрических характеристик непрерывный контроль количества осаждаемого распыленного в области их установки в вакуумной камере материала на единицу площади за единицу времени. На основе результатов контроля изменяют схему размещения и тепловые режимы защитных конструкционных элементов в вакуумной камере. Другое изобретение группы относится к комплексу для обеспечения снижения интенсивности эффекта распыления материала в вакуумной камере при проведении огневых испытаний электрореактивных двигателей, включающему охлаждаемые и неохлаждаемые защитные конструкционные элементы, размещаемые в вакуумной камере, а также датчики, сообщенные через гермопроходной соединитель и преобразователь сигнала с компьютером. Защитные конструкционные элементы, устанавливаемые в вакуумную камеру, выполнены с возможностью изменения схемы их размещения и их тепловых режимов. Датчики обеспечивают за счет изменения их оптических и(или) электрических характеристик изменение величины выходного сигнала пропорционально количеству осаждаемого в области их установки материала, распыленного в вакуумной камере, на единицу площади за единицу времени. Группа изобретений позволяет снизить количество осаждаемого на поверхности испытательного оборудования материала. 2 н.п. ф-лы, 2 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания при их испытании и доводке после модернизации, форсирования или дефорсирования. Устройство содержит обратимую винтовую пару и механизм принудительного изменения взаиморасположения элементов винтовой пары, технологический привод (шестерню, звездочку) кулачкового вала 10 и кулачковый вал 11, к ступице привода (шестерня, звездочка) прикреплена обойма 7 обратимой шарико-винтовой передачи, передающей усилие вращения, возникающее при осевом перемещении винтового вала 5, на сепаратор 8, жестко соединенный с кулачковым валом 11. На хвостовике винтового вала шарико-винтовой передачи смонтирован подшипниковый узел 3 для передачи осевого усилия от механизма осевого перемещения 2 - «винт-гайка» на винтовой вал, при этом корпус подшипникового узла 3 при вращении рукоятки 1 выполняет осевые перемещения совместно с винтовым валом 5 и кулачковый вал изменяет угловое положение относительно привода. Корпус устройства, в котором размещены механизмы и детали (кроме рукоятки управления) закреплен на технологической крышке картера газораспределительного механизма двигателя. Технический результат заключается в упрощении конструкции, в уменьшении габаритно-массовых параметров, снижении трудоемкости подключения и погрешности изменения параметров при стендовых испытаниях и возможности принудительного бесступенчатого изменения углового положения кулачкового вала относительно коленчатого вала на любом режиме испытания двигателя. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в системах снижения выбросов двигателей внутреннего сгорания. Узел (200) датчика твердых частиц содержит две полностью перекрещивающиеся трубки (232) и (234), соединенные по текучей среде с внешней кольцевой трубкой (220). Перекрещивающиеся и внешняя кольцевая трубки (232), (234) и (220) соединены по текучей среде с датчиком через изогнутую трубку (251), проходящую в направлении, противоположном потоку (298) отработавших газов. Раскрыты вариант выполнения узла датчика твердых частиц и способ работы узла датчика твердых частиц. Технический результат заключается в снижении вероятности попадания крупных твердых частиц и/или капель воды в датчик твердых частиц. 3 н. и 17 з.п. ф-лы, 4 ил.

Изобретение касается способа регистрации состояния насосного агрегата или части насосного агрегата. Способ включает следующие шаги способа: запись видеоряда находящегося в эксплуатации насосного агрегата или по меньшей мере его части, и определение состояния насосного агрегата или его части по изменениям на изображениях видеоряда. При этом определяют скорости изменений между пикселями или группами пикселей изображений видеоряда, следующих друг за другом, и по определенным скоростям изменений осуществляют определение состояния насосного агрегата. Видеоряд оценивается путем цифровой обработки изображений при поддержке банком данных. Изобретение позволяет просто и без больших конструктивных издержек определить работает ли насосный агрегат надлежащим образом, или же в данной области констатируются недопустимо высокие колебания, которые указывают на дефект, например повреждение подшипника или неоптимальную настройку частоты вращения. 14 з.п. ф-лы, 6 ил.
Наверх