Способ получения потока капель с регулируемым дисперсным составом

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной форсункой, содержащей камеру закручивания, входные тангенциальные каналы и выходное сопло. В процессе распыливания жидкости изменяют суммарную площадь входных тангенциальных каналов путем дискретного перекрытия части каналов, а максимальный диаметр капель Dmax, дифференциальную g(D) и интегральную G(D) функции массового распределения капель по размерам в потоке определяют в соответствии с соотношениями

где δ - толщина пленки жидкости в выходном сечении сопла, м;

Oh - число Онезорге;

Re - число Рейнольдса;

D - диаметр капель жидкости, м.

Значения толщины пленки жидкости, чисел Re и Oh определяют расчетом по формулам теории центробежной форсунки Г.Н. Абрамовича для заданных значений расхода жидкости и геометрической характеристики форсунки. Техническим результатом изобретения является обеспечение возможности регулирования дисперсности капель жидкости в факеле распыла форсунки в процессе ее работы. 4 ил., 1 табл., 1 пр.

 

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и лакокрасочной промышленности.

Известен способ диспергирования жидкости путем тангенциальной подачи компонентов и последующего распада образующейся вращающейся пленки на капли под действием центробежных сил [1].

Известна центробежная форсунка, камера закручивания в которой выполнена в виде стакана с рядом тангенциальных отверстий на боковой поверхности. Ширина конуса распыла увеличена за счет выполнения сопла в виде двух усеченных конусов, сопрягающихся вершинами [2].

Известна форсунка содержащая корпус, внутреннюю и наружную втулки, образующие с корпусом коаксиальные каналы для создания параллельных потоков жидкости в среднем канале и потоков распылителя во внутреннем и наружном каналах, подключенных к сопловому аппарату, средний кольцевой канал на выходе из форсунки выполнен в виде сопла, имеющего большой ряд равномерно размещенных по окружности отверстий малого размера, расположенных под углом 45° к оси форсунки и имеющих угол наклона 30° в радиальном направлении, обеспечивающих создание струйного вихревого потока топлива в сносящие и облегающие вихревые потоки окислителя, закрученные в противоположном направлении, создаваемые закручивателями потоков: внутренний - через тангенциальный, наружный - через винтовой. [3].

Известен способ изменения угла конусности распыленной струи путем регулирования ширины канала, служащего для тангенциального подвода топлива [4]. Жидкое топливо поступает в камеру завихрения по подводящему каналу, который частично или полностью перекрывается поршнем, приводимым в поступательное движение маховиком. Угол конусности распыла в форсунке может меняться от 3 до 100°.

Наиболее близким по технической сущности к заявляемому изобретению является способ распыливания жидкости центробежными форсунками [5].

Недостатком данного способа является невозможность изменения дисперсности распыла в процессе работы форсунки.

Техническим результатом настоящего изобретения является возможность регулирования дисперсности капель жидкости в факеле распыла форсунки в процессе ее работы.

Технический результат изобретения достигается тем, что разработан способ получения потока капель с регулируемым дисперсным составом, включающий распыливание жидкости в газообразной среде центробежной форсункой, содержащей камеру закручивания, входные тангенциальные каналы и выходное сопло. В процессе распыливания жидкости изменяют суммарную площадь входных тангенциальных каналов путем дискретного перекрытия части каналов. Максимальный диаметр капель, дифференциальную и интегральную функции массового распределения капель по размерам в потоке определяют в соответствии с соотношениями

где Dmax - максимальный диаметр капель, соответствующий ординате 0.95 функции G(D), м;

g(D) - дифференциальная функция массового распределения капель по размерам, м-1;

G(D) - интегральная функция массового распределения капель по размерам;

δ - толщина пленки жидкости в выходном сечении сопла, м;

Oh=Re2/We - число Онезорге;

- число Рейнольдса;

- число Вебера;

D - диаметр капель, м;

ρg - плотность газообразной среды, кг/м3;

u1 - скорость жидкости в выходном сечении сопла форсунки, м/с;

μg - коэффициент динамической вязкости газообразной среды, Па⋅с;

σ - коэффициент поверхностного натяжения жидкости, Н/м.

Скорость и толщину пленки жидкости в выходном сечении сопла определяют расчетом по формулам теории центробежной форсунки Г.Н. Абрамовича для заданных значений расхода жидкости и геометрической характеристики форсунки

где А - геометрическая характеристика форсунки;

R - радиус камеры закручивания, м;

rc - радиус выходного сопла, м;

n - количество не перекрытых входных тангенциальных каналов;

rвх - радиус входного тангенциального канала, м.

Сущность изобретения поясняется схемой форсунки (Фиг. 1), на которой реализован способ регулирования размеров капель в факеле распыла. Форсунка имеет цилиндрическую камеру закручивания 1, выходное сопло 2 и ряд симметрично расположенных по окружности камеры закручивания тангенциальных каналов 3. В стенке камеры закручивания 1 выполнена внутренняя кольцевая полость 4, в которой вдоль оси камеры закручивания 1 перемещается стакан 5. Толщина стенок стакана 5 равна диаметру тангенциальных каналов 3. Внутренняя кольцевая полость 4 при помощи штуцера 7 связана с системой подачи распыливаемой жидкости. Кольцевой уплотнитель 8 служит для герметизации внутренней полости 4. Дно стакана жестко соединено штоком 6 с механизмом осевого перемещения (на Фиг. 1 не показан), а передняя кромка имеет k симметрично расположенных выступов 9 в виде прямоугольных треугольников (Фиг. 2), на наклонной стороне которых выполнено m последовательных прямоугольных уступов 10. Высота уступов 10 равна диаметру тангенциальных каналов, а ширина равна расстоянию между центрами каналов. Количество уступов 10 на выступе 9 связано с количеством тангенциальных каналов n соотношением:

Реализацию способа осуществляют следующим образом.

Распыливаемая жидкость по штуцеру 7 поступает во внутреннюю полость 4 и через тангенциальные каналы 3 в камеру закручивания и выходное сопло 2. При осевом перемещении стакана 5 под действием штока 6, уступы 10 на выступах 9 частично перекрывают тангенциальные каналы 3. При этом изменяется геометрическая характеристика форсунки А и толщина пленки жидкости в выходном сечении сопла 5 и, следовательно, дисперсность капель в факеле распыла.

Достижение положительного эффекта изобретения обеспечивается следующими факторами.

1. Дискретное перекрытие части входных тангенциальных каналов n для ввода жидкости в камеру закручивания изменяет геометрическую характеристику форсунки А (4), которая связана с коэффициентом живого сечения форсунки ϕж [6] соотношением

где

Толщина пленки жидкости на выходе из сопла форсунки связана с коэффициентом живого сечения форсунки ϕж соотношением:

График зависимости отношения δ/rc от геометрической характеристики форсунки А, определяемый из уравнений (6-8), приведен на Фиг. 3.

Известно [1-5], что при распыливании жидкости центробежной форсункой размер образующихся капель коррелирует с толщиной пленки жидкости: с увеличением толщины пленки δ размер капель увеличивается.

2. Формула (1) для расчета Dmax, соответствующим ординате 0.95 интегральной функции распределения G(D) (Фиг. 4), получена аппроксимацией результатов многочисленных экспериментальных исследований дисперсности капель в факеле распыла и в двухфазных потоках [1-5,8].

3. Результаты экспериментов [1-5,8] показали, что функция g(D) соответствует распределению Розина - Раммлера. Связь параметров дифференциального и интегрального распределения с Dmax определяется уравнениями (2,3) [9].

Пример реализации

В качестве примера реализации заявляемого способа получения потока капель с регулируемым дисперсным составом, рассмотрим центробежную форсунку (Фиг. 1) со следующими характеристиками: радиус камеры закручивания R=20 мм, радиус выходного сечения сопла rc=2 мм, радиус тангенциальных каналов rвх=0.5 мм, количество каналов n=12. Распыливаемой жидкостью служит вода, подаваемая при перепаде давления на форсунке Δр=6 МПа. Характеристики воды при температуры T=20°C: плотность , коэффициент поверхностного натяжения σ=72.3 мН/м. Рассмотрим работу форсунки в воздушной среде при температуре T=20°C: плотность воздуха ρg=1.205 кг/м3, коэффициент динамической вязкости μg=18.1⋅10-6 Па⋅с.

Выберем стакан с четырьмя выступами (k=4), имеющих m=3 уступов, причем в основании выступов сделаем только 2 симметричных уступа. Таким образом, количество рабочих тангенциальных каналов будет изменяться в последовательности: 12-8-4-2. Высота уступов равна 2rвх=1 мм, а ширина равна 2πR/n=10.5 мм. Толщина стенок стакана равна диаметру тангенциальных каналов.

Проведем расчет значения максимального диаметра капель для каждого режима работы форсунки. По формуле (4) рассчитывают геометрическую характеристику форсунки А. Решая уравнение (6), определяем коэффициент живого сечения ϕж. По формуле (8) вычисляем толщину пленки жидкости на выходе сопла 8.

По формулам теории центробежной форсунки [6] определяют коэффициент расхода сопла:

массовый расход жидкости через сопло

и скорость жидкости на выходе сопла

По известным параметрам жидкости в выходном сечении сопла рассчитываются критерии подобия Re, We, Oh и по формуле (1) определяется значение максимального диаметра капель в факеле распыла Dmax. Соотношения (2) и (3) определяют дифференциальную g(D) и интегральную G(D) функции массового распределения капель по размерам в факеле распыла форсунки для каждого значения максимального диаметра капель Dmax.

Результаты расчета для выбранной геометрии форсунки приведены в таблице 1.

Из таблицы 1 видно, что при изменении количества рабочих тангенциальных каналов ввода жидкости в камеру закручивания с n=12 до n=2 максимальный диаметр капель в факеле распыла уменьшается в 1.9 раза. Нормированная дифференциальная (g(D)/gmax(D)) и интегральная G(D) функции массового распределения капель по размерам, рассчитанные по соотношениям (2) и (3) для режима n=12 (Dmax=680 мкм) и n=2 (Dmax=354 мкм), приведены на Фиг. 4.

Приведенный пример доказывает, что, при реализации предлагаемого способа получения потока капель с регулируемым дисперсным составом, достигается положительный эффект, заключающийся в том, что перекрытие части входных тангенциальных каналов в процессе работы центробежной форсунки позволяет изменять максимальный диаметр капель в факеле распыла. При этом изменяется дисперсный состав капель, который определяется функциями распределения g(D) и G(D).

ЛИТЕРАТУРА

1. Витман Л.А., Кацнельсон Б.Д., Палеев И.И. Распыливание жидкости форсунками. - М. - Л.: ГЭИ, 1962. - 264 с.

2. Патент РФ №2648068 С2 МПК В05В 1/34. Центробежная широкофакельная форсунка/ Стареева М.М.; опубл. 22.03.2018 г.

3. Патент РФ №2172893 С1 МПК F23D 11/12, F23C 11/00, В05В 1/34. Форсунка/ Бедковский Л.В., Жуков В.Г., Левин Е.И., Попсуй В.М.; опубл. 27.08.2001 г.

4. Замазий И.О., Сыркин С.Н. Регулируемая форсунка для распыливания жидкостей // Котлотурбостроение, 1936, №9.

5. Пажи Д.Г., Галустов B.C. Распылители жидкостей. - М.: Химия, 1979. - 216 с.

6. Васильев А.П., Кудрявцев В.М., Кузнецов В.А. и др. Основы теории и расчет жидкостных ракетных двигателей. - М.: Высш. школа, 1983. - 703 с.

7. Раушенбах Б.В., Белый С.А., Беспалов И.В. и др. Физические осневы рабочего процесса в камерах сгорания воздушно-реактивных двигателей. М.: Машиностроение, 1964. - 526 с.

8. Архипов В.А., Золотарев Н.Н., Басалаев С.А., Бондарчук С.С. Дисперсность капель в факеле распыла форсунок // Оптика атмосферы и океана, 2018. Т. 31, №6. - С 489-491.

9. Коузов П.А. Основы анализа дисперсного состава промышленных пылей и измельченных материалов. - Л.: Химия, 1971. - 280 с.

Способ получения потока капель с регулируемым дисперсным составом, включающий распыливание жидкости в газообразной среде центробежной форсункой, содержащей камеру закручивания, входные тангенциальные каналы и выходное сопло, отличающийся тем, что в процессе распыливания жидкости изменяют суммарную площадь входных тангенциальных каналов путем дискретного перекрытия части каналов, а максимальный диаметр капель, дифференциальную и интегральную функции массового распределения капель по размерам в потоке определяют в соответствии с соотношениями

где Dmax - максимальный диаметр капель, соответствующий ординате 0.95 функции G(D), м;

g(D) - дифференциальная функция массового распределения капель по размерам, м-1;

G(D) - интегральная функция массового распределения капель по размерам;

δ - толщина пленки жидкости в выходном сечении сопла, м;

Oh=Re2/We - число Онезорге;

- число Рейнольдса;

- число Вебера;

D - диаметр капель, м;

ρg - плотность газообразной среды, кг/м3;

u1 - скорость жидкости в выходном сечении сопла форсунки, м/с;

μg - коэффициент динамической вязкости газообразной среды, Па⋅с;

σ - коэффициент поверхностного натяжения жидкости, Н/м,

при этом скорость и толщину пленки жидкости в выходном сечении сопла определяют расчетом по формулам теории центробежной форсунки Г.Н. Абрамовича для заданных значений расхода жидкости и геометрической характеристики форсунки

где А - геометрическая характеристика форсунки;

R - радиус камеры закручивания, м;

rc - радиус выходного сопла, м;

n - количество неперекрытых входных тангенциальных каналов;

rвх - радиус входного тангенциального канала, м.



 

Похожие патенты:

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в химической, энергетической и пищевой отраслях промышленности, а также в двигателестроении.

Изобретение относится к способу и устройству для опреснения воды. Способ опреснения соленой воды, в котором опресняемая соленая вода, подаваемая в виде струи или пелены, периодически подвергается воздействию сильной ударной волны и высокоскоростного потока горячих газообразных продуктов детонации, приводящему к тонкой аэродинамической фрагментации струи или пелены опресняемой соленой воды.
Изобретение относится к области предварительной обработки морской воды перед опреснением в адиабатном многоступенчатом опреснителе путем ее гидродинамической кавитационной обработки и активации атмосферным воздухом.

Группа изобретений относится к однофазному распылительному насадочному устройству для распылительной сушки, к аппарату для распылительной сушки и способу распылительной сушки.

Изобретение относится к области сельского хозяйства и может быть использовано при орошении дождеванием, преимущественно широкозахватными дождевальными машинами, работающими в движении как фронтально, так и по кругу.

Изобретение относится к области водопроводных устройств. Поворотное душевое устройство содержит корпус душевого устройства с основанием, поворотный корпус, содержащий душевую лейку и установленный с возможностью поворотного перемещения относительно основания между исходным положением и рабочим положением, вход для душевой жидкости и канал для прохода жидкости от входа для душевой жидкости в душевую лейку.

Изобретение относится к инструменту для нанесения покрытия на монолитную фигурную основу катализатора, включающему: первые средства (1) для обратимого удерживания и фиксирования каталитического монолита, для нанесения на него покрытия из пористого оксида; вторые средства (2) для управления потоком оксида, направляемого в монолит, причем вторые средства (2) прикреплены к первым средствам (1) так, что в процессе нанесения покрытия вторые средства (2) входят в соприкосновение с оксидом до того, как он достигнет монолита; вторые средства (2) имеют форму пластины с отверстиями (3), у которых, в процессе использования, впускная сторона обращена к оксиду, а выпускная сторона обращена к монолиту, и каналы которых соединяют впускную сторону с выпускной стороной для обеспечения сквозного прохождения оксида; и по меньшей мере часть упомянутых каналов имеет асимметричную ширину канала вдоль оси с большей шириной на стороне впуска оксида по сравнению с точкой внутри каналов, и эти асимметричные отверстия (3) шире на стороне выпуска оксида по сравнению с точкой внутри каналов, и область, ширина которой меньше, чем на выпускной и впускной сторонах отверстий (3), по меньшей мере для некоторых отверстий (3) находится ближе к выпускной стороне, чем к впускной стороне.

Изобретение относится к системе камеры сгорания и устройства для селективного некаталитического восстановления, в частности к соплу для введения реагента в камеру сгорания.

Изобретение относится к области сельского хозяйства и найдет применение при регулировании микроклимата в садах и на полях. Устройство включает в себя основание (1) и мачту (2) с размещенными в ее верхней части разбрызгивателями (3).

Изобретение относится к устройствам для распыления, в частности к приспособлениям для распыления в комбинации с другими операциями, например сушкой, и предназначено для индивидуальной периодической обработки изделий, например обуви, в период их эксплуатации посредством нанесения на поверхность пропиточного средства методом распыления.
Наверх