Аппарат магнитной активации жидкостей

Изобретение относится к методам и средствам магнитной активации жидких сред и может быть использовано при разработке и эксплуатации топливных систем двигателей внутреннего сгорания транспортных средств и технологических машин, жидкостных реактивных двигателей, в теплотехнике и энергетике, в нефтяной, пищевой промышленности, в медицине, биологии, сельском хозяйстве и других областях. Устройство содержит внутреннюю и внешнюю цилиндрические неферромагнитные кассеты, в которых выполнены радиально ориентированные отверстия с расположенными в них постоянными магнитами цилиндрической формы, количество которых во внутренней и внешней кассетах равное. Между кассетами размещен спиральный неферромагнитный участок трубопровода. Магниты расположены таким образом, чтобы силовые линии магнитов внешней кассеты проходили сквозь активируемую жидкость, движущуюся в трубопроводе, и замыкались на противоположные полюса магнитов внутренней кассеты. Переменное магнитное поле создается изменением полярности магнитов на противоположную через заданные угловые промежутки - секторы. На каждом витке спирального участка трубопровода движущийся поток активируемой жидкости перемагничивается заданное количество раз. Для создания магнитного поля переменной частоты перемагничивания значения углов, образующих соседние сектора, и количество магнитов в них могут различаться между собой. Технический результат: повышение эффективности магнитной обработки, универсальность для обработки большинства жидких сред, обеспечение постоянства характеристик магнитного поля на всех отдельных участках движения жидкости, компактность и модульность конструкции, автономность устройства, связанная с отсутствием внешних источников питания. 1 ил.

 

Изобретение относится к методам и средствам магнитной активации жидких сред и может быть использовано при разработке и эксплуатации двигателей внутреннего сгорания транспортных средств и технологических машин, жидкостных реактивных двигателей, в теплотехнике и энергетике, в нефтяной, пищевой промышленности, в медицине, биологии, сельском хозяйстве и других областях, где применяется магнитная обработка жидких, коллоидных и газообразных рабочих тел. Процессы, происходящие при магнитных воздействиях на неферромагнитные жидкости, обладающие свойствами диамагнетиков и парамагнетиков, описаны в [1, 2] и других источниках.

Известны магниточастотные резонаторы «Super Fuel Мах», запатентованные корпорацией «General Motor» на базе магнитожестких ферритов [3]. Устройство состоит из пяти пар постоянных магнитов на основе сплавов неодим-железо-бор, объединенных в два блока, которые жестко крепятся на противоположных сторонах сечений топливопровода в непосредственной близости от карбюратора, инжектора или перед топливным насосом высокого давления таким образом, чтобы северные полюса магнитов одного блока находились против южных полюсов другого.

Недостатком этого устройства является то, что по сечениям активного участка топливопровода напряженность магнитного поля будет существенно различаться. Если, по данным разработчиков, вблизи полюсов она будет равна 1400-1600 эрстед, то в центре топливопровода (диаметром 20 мм) напряженность не будет превышать 150-300 эрстед, то есть воздействие магнитного поля на разные слои топлива будет не одинаково. Длина пути, на протяжении которого топливо обрабатывается магнитным полем, составляет не более 70 мм. Не предусмотрена компенсация изменения скорости протекания топлива при работе двигателя на разных рабочих режимах. Представляется проблемной активация больших масс жидких сред с помощью подобного устройства. Конструкция не предусматривает корректировку основных магнитотропных параметров.

Известен также аппарат [4], состоящий из неферромагнитного корпуса, внутри которого закреплены постоянные магниты, расположенные так, что обеспечивается зигзагообразное движение рабочей жидкости между ними.

Основным преимуществом активатора [4] перед резонаторами «Super Fuel Мах» [3] является увеличение пути и времени движения рабочего тела в магнитном поле не менее, чем в 3 раза. Однако зигзагообразный поток активируемой жидкости с резкими изменениями проходных сечений активатора и направления движения жидкости неизбежно приводит к нежелательным кавитационным явлениям, нарушающим рабочие процессы, и усложнению процесса регулирования магнитных параметров активатора. При увеличении скорости потока жидкости названные негативные эффекты усиливаются.

В заявляемом устройстве реализована принципиально иная схема взаимодействия активируемой жидкости с переменным магнитным полем.

На прилагаемом чертеже пояняется принцип работы заявляемого устройства, показанного в частично разобранном положении. Взаимная ориентация кассет и трубопровода соответствует реальному рабочему положению. Аппарат содержит внутреннюю 1 и внешнюю 4 цилиндрические неферромагнитные кассеты, в которых выполнены радиально ориентированные и попарно соосные отверстия с расположенными в них постоянными магнитами 2, 5 цилиндрической формы. Количество магнитов во внутренней и внешней кассетах равное. Между кассетами размещен спиральный неферромагнитный участок 3 трубопровода, площадь и форма сечения которого выбираются в зависимости от вида жидкости и характеристик ее потока. Магниты расположены таким образом, чтобы силовые линии магнитов 5 внешней кассеты 4 проходили сквозь активируемую жидкость, движущуюся в трубопроводе 3, и замыкались на противоположные полюса магнитов 2 внутренней кассеты 1. Для реализации магнитожестких характеристик и высокой напряженности магнитного поля применены ниодимовые магниты из сплавов неодим-железо-бор. Переменное магнитное поле создается изменением полярности магнитов на противоположную через определенные угловые промежутки - секторы, вмещающие заданное количество магнитов, вследствие чего на каждом витке спирального участка трубопровода движущийся поток активируемой жидкости перемагничивается заданное количество раз. В заявляемом устройстве использованы серийно выпускаемые ниодимовые магниты цилиндрической формы размером 10×10 мм. Их минимальное рациональное количество на окружности каждой кассеты составляет 12 шт., что позволяет создать равноугольные секторы с количеством магнитов в сечении 6, 4, 3 и 2, то есть 4 варианта количества перемагничиваний на каждом витке трубопровода, соответственно, 2, 3, 4, и 6 раз. Минимальное количество секторов равно двум. Количество магнитов по длине каждой кассеты зависит от количества витков спирального трубопровода и размера сечения витка, которые назначаются в зависимости от вида активируемой жидкости, характеристик движения ее потока и требуемой степени активации. На рисунке показано распределение 16 магнитов в четырех секторах с образующими их углами в 90° и их количеством 10 шт. в каждом ряду по длине кассеты.

Для создания магнитного поля переменной частоты значения углов, образующих соседние сектора, и количество магнитов в них могут различаться между собой.

Течение активируемой жидкости в спиральном трубопроводе обуславливает неравенство линейных скоростей ее элементарных объемов, движущихся по окружностям с различными радиусами. Это создает турбулентность потока, которая способствует постоянному перемешиванию активируемой жидкости и равномерности ее магнитной обработки. Общая длина активной части заявляемого устройства и время пребывания в ней при прочих равных условиях кратно превышают соответствующие показатели аналогов.

Сборка заявляемого устройства и приведение его в рабочее положение осуществляется в последовательности:

- маркировка полюсов всех магнитов;

- размещение половины магнитов в глухих отверстиях внутренней кассеты по предварительно назначенной схеме;

- монтаж спирального участка трубопровода на внутренней кассете;

- монтаж внешней кассеты на спиральном участке трубопровода;

- фиксация взаимного рабочего положения внутренней и внешней кассет и спирального трубопровода с помощью специальной торцевой крышки (на рисунке условно не показана);

- размещение магнитов в сквозных отверстиях внешней кассеты согласно назначенной схеме;

- радиальная фиксация магнитов внешней кассеты внешней кольцевой неферромагнитной обоймой (на рисунке условно не показана);

- монтаж второй торцевой фиксирующей крышки (на рисунке условно не показана);

- подключение штатного магистрального трубопровода активируемого рабочего тела к входному и выходному патрубкам спирального участка трубопровода устройства;

- реализация рабочего процесса магнитной обработки жидкости.

Контроль эффективности магнитной активации жидкостей в условиях применения заявляемого устройства осуществляется косвенными методами, основанными на регистрации изменения поверхностного натяжения или вязкости жидкости до обработки, в ее процессе и после обработки. При необходимости назначается процесс обработки, предусматривающий несколько циклов прохождения жидкости через аппарат.

Заявляемый аппарат магнитной активации жидкостей обладает следующими преимуществами:

• позволяет реализовать высокоэффективные процессы магнитной обработки, универсальные для активации большинства жидких сред;

• обеспечивает постоянство характеристик магнитного поля на всех отдельных участках движения жидкости;

• позволяет многократно увеличить расстояние, на котором магнитное поле воздействует на активируемую жидкость;

• простота обеспечения контроля и регулирования рабочих режимов;

• компактность и модульность конструкции;

• автономность устройства, связанная с отсутствием внешних источников питания;

• минимальные регламентные процедуры в процессе эксплуатации.

Источники информации

1. Помазкин В.А. Неспецифические воздействия физических факторов на объекты биотехносферы: Монография. - Оренбург, ИПК ОГУ, 2001. - 340 с.

2. Щурин К.В. Изменение свойств немагнитных жидкостей в переменном магнитном поле / К.В. Щурин, И.Г. Панин // «Информационно-технологический вестник» - №1. - 2017. - С. 103-114.

3. Патенты USA №4802931, №4496395, №7458412, General Motor.

4. Пат. 2411190 РФ, МПК G02F 1/48. Магнитный активатор жидких сред / Помазкин В.А., Щурин К.В., Цветкова Е.В. - Опубл. 10.02.2011. Бюл. №4.

Аппарат магнитной активации жидкостей, включающий спиральный неферромагнитный участок трубопровода, расположенный между внутренней и внешней цилиндрическими неферромагнитными кассетами, в которых выполнены радиально ориентированные отверстия с размещенными в них постоянными магнитами цилиндрической формы, количество которых во внутренней и внешней кассетах равное, и силовые линии магнитов внешней кассеты проходят сквозь жидкость, движущуюся в трубопроводе, и замыкаются на противоположные полюса магнитов внутренней кассеты, отличающийся тем, что для создания переменного магнитного поля полярность магнитов в кассетах изменяется на противоположную через заданные угловые промежутки в виде секторов, количество которых не менее двух для полного витка трубопровода, а для создания поля переменной частоты перемагничивания значения углов, образующих соседние секторы, и количество магнитов в них могут назначаться различающимися между собой.



 

Похожие патенты:

Изобретение может быть использовано при переработке технологических потоков органического происхождения. Для извлечения фосфата в биомассу добавляют источник ионов магния и подвергают ее предварительной обработке, включающей стадию термического гидролиза при температуре 140-220°С и давлении насыщения.

Группа изобретений может быть использована для биологической очистки сточных вод. Устройства содержат внутренний биологический реактор, который объединяет и смешивает сточные воды и рециркулируемую биомассу, и внешний селектор, который работает на потоке отходов из внутреннего биологического реактора для сбора и удержания агрегатов биомассы.

Изобретение может быть использовано в химической промышленности. Очистку технологических конденсатов от сероводорода и аммиака осуществляют в двух последовательно подключенных колоннах, снабженных массообменными устройствами: колонне выделения сероводорода 1 и колонне получения очищенной сточной воды 2, с выводом из этой системы очищенной сточной воды 13, газообразного сероводорода 18 и газовой смеси аммиака с остаточным сероводородом и водой 20.

Изобретение относится к биотехнологии и может быть использовано на птицефабриках, животноводческих фермах и комплексах. Способ переработки фекальных и животноводческих стоков предусматривает сбрызгивание стоков концентрированным почвенным раствором, заполнение гравитационной разделительной колонны и выдерживание интервала времени, достаточного для разделения на жидкую фракцию и осадок.

Изобретение может быть использовано для очистки промышленных сточных вод, загрязненных остатками промывных вод отделочно-красильных производств текстильной промышленности.
Изобретение относится к электрохимической регенерации хроматных растворов, применяемых для пассивирования кадмиевых покрытий. Способ включает обработку регенерируемого раствора в анодной камере с анодом из платинированного металла трехкамерного электролизера, состоящего из анодной камеры, отделенной от нее катионообменной мембраной средней камеры и катодной камеры, которая отделена от средней камеры анионообменной мембраной.

Изобретение относится к области охраны окружающей среды и может быть использовано для ликвидации нефтеразливов при добыче, транспортировке и хранении углеводородного сырья и продуктов его переработки.

Изобретение может быть использовано в водоподготовке для предварительной очистки питьевой воды, оборотных, промышленных и бытовых сточных вод, при обезвоживании осадков.

Изобретения относятся к технике гравитационного и(или) флотационного извлечения дисперсных включений из жидкостей. Способ гравитационного и флотационного разделения компонентов дисперсной жидкости, пропускаемой по каналу устройства, содержащего шламосборник, принимающий всплывающие включения, которые перетекают через край его стенки, а также размещенный спереди, сзади или сбоку шламосборника отсек, в котором находится вход в патрубок, отводящий очищенную жидкость, отличающийся тем, что очищенную жидкость из отсека в отводящий патрубок переливают через край воронки или через край перегородки, высотные отметки которых находятся ниже уровня края передней стенки шламосборника.

Изобретение может быть использовано в химической промышленности для получения дезинфицирующих веществ. Оксиданты получают электрообработкой исходных растворов хлорида натрия в анодной камере диафрагменного электролизера и раствора гидроксида натрия в катодной камере электролизера с концентрацией 1-2 г/л и 3-5 г/л соответственно.

Изобретение относится к биотехнологии, а именно к получению репрезентативных популяций гемопоэтических клеток и набору для их получения. Способ включает культивирование гемопоэтических клеток на магнитных стромальных слоях, полученных путем инкубации стромальных клеток с магнитными наночастицами или магнитными липосомами с последующей обработкой клеток митомицином С или облучением рентгеновским или гамма излучением для остановки их деления, при сборе гемопоэтических клеток проводят диссоциацию культуры путем обработки трипсином, коллагеназой, или другим протеолитическим ферментом, или интенсивным перемешиванием культуры, а очистку клеточных препаратов проводят путем удаления магнитной стромы на магните.

Настоящее изобретение относится к соединительному узлу, в частности соединительному узлу для присоединения магнитного сепаратора к системе центрального отопления.

Предложенная группа изобретений относится к сепаратору и системе разделения частиц, выполненных с возможностью удаления магнитных и немагнитных проводящих частиц из жидкости.

Группа изобретений относится к магнитному сепаратору для применения в системе центрального отопления (варианты) и, в частности, к приспособлению для отсоединения магнитного сепаратора.

Настоящее изобретение относится к сепараторному устройству, которое подходит для отделения частиц от потока текучей среды, в том числе к сепараторному устройству для использования в системе жидкостного отопления.
Изобретение относится к переработке красных шламов - отходов алюминиевого производства. Красный шлам измельчают и разделяют с помощью магнитной сепарации на магнитную и немагнитную фракции.

Изобретение относится к обогащению железосодержащих руд и может быть использовано в горнорудной и металлургической промышленности. Способ обогащения железосодержащих руд включает несколько стадий измельчения, мокрую магнитную сепарацию измельченных продуктов каждой стадии с получением промпродуктов и отвальных хвостов и с получением концентрата с помощью мокрой магнитной сепарации после последней стадии измельчения.

Изобретение может быть использовано для обогащения и комплексной переработки железосодержащих техногенных отходов, а также труднообогатимых железных руд. Способ комплексной переработки техногенного и труднообогатимого железосодержащего сырья включает измельчение, магнитную сепарацию и классификацию.
Изобретение относится к порошковой металлургии железа и его сплавов и может быть использовано для извлечения железа в виде дисперсных частиц порошка из отработанного смазочного масла при эксплуатации автотракторного парка.

Изобретение относится к обогащению и переработке железных руд и может быть использовано в горнорудной и металлургической промышленности. Способ обогащения и переработки железных руд включает измельчение руды, магнитную сепарацию.

Изобретение может быть использовано в водоочистке. Станция очистки воды озонированием с использованием атмосферного электричества состоит из устройства очистки воды методом озонирования 7, преобразователя напряжения 25, блока дистанционного управления 23, устройства для использования атмосферного электричества, содержащего приемный блок, выполненный в виде расположенных по вертикали крестообразного антенного элемента 6 и соединенных вертикально с ним трибоэлементов 3, 4, 5, камеру из диэлектрика 17, в которой размещен конденсатор большой емкости 13 с верхним и нижним дисками, снабженный искровым разрядником 18, металлический защитный кожух с антикоррозийным покрытием 20, основание 8. На нижнем трибоэлементе 3 шарообразной формы закреплена соединенная с верхним диском конденсатора игла 10. На основании 8 устройства для использования атмосферного электричества закреплена заземленная игла 9, соединенная своей вершиной с нижним диском конденсатора. К иглам 9, 10 присоединена сеть, имеющая на верхней ветви искровой разрядник 11, второй электрод которого соединен с катушкой индуктивности 12, которая соединена с нижней заземленной иглой 9. Вторая катушка самоиндукции 15 соединена с выпрямителем 16, соединенным с конденсатором большой емкости 13, соединенным с аккумулятором 14. Верхняя 10 и нижняя 9 иглы выполнены с покрытием из диэлектрика. Приемный блок содержит металлическую капсулу 24, содержащую радиоактивный изотоп, трибоэлементы 3, 4, 5, покрытые материалом, обладающим высокой проводимостью. Роль подъемника приемного блока выполняют металлические опоры 2, соединенные вверху с металлическим кольцом 19, покрытым диэлектриком, металлическое основание 8. Блок дистанционного управления 23 соединен с двойным выключателем 21 на верхней 10 и нижней 9 иглах и индикатором заряженности аккумулятора 22, соединенным с аккумулятором. Изобретение позволяет обеспечить автономную работу станции очистки воды в постоянном режиме вне связи с электросетью. 1 ил.
Наверх