Способ построения маршрута маловысотного полета на виртуальном полигоне

Изобретение относится к способу построения маршрута маловысотного полета на виртуальном полигоне. Для построения маршрута производят моделирование виртуальной карты рельефа местности, используют динамическую модель испытуемого ЛА, производят полет по заданному маршруту, производят разложение заданного маршрута на элементарные звенья определенным образом, формируют горный рельеф с заданными параметрами, привязывают разработанный маршрут к географическим координатам, определенными навигационной системой на борту ЛА, определяют область возможного выполнения маловысотного полета для каждого элементарного звена и для общей области полета над заданным рельефом местности. Обеспечивается уменьшение затрат и времени для создания виртуального рельефа местности для моделирования полета. 17 ил.

 

Изобретение относится к обработке данных с помощью вычислительных машин и может быть использовано для разработки маршрутов и создания виртуальных испытательных полигонов. Существующий в настоящее время метод оценки характеристик маловысотного полета (МВП) основан на применении средств внешнетраекторных измерений (ВТИ). Погрешность определения координат пространственного местоположения при выполнении МВП не должна превышать при этом 3…10 м. Для обеспечения указанной точности траекторных измерений существующими средствами ВТИ необходимо создать густую сеть (15…20) измерительных пунктов (ИП), расположенных в непосредственной близости от трасс МВП (на удалении не более 5 км), а также обеспечить в дальнейшем их эксплуатацию. Очевидно, что задача требует больших финансовых затрат для закупки измерительного оборудования ИП, строительства и подготовки площадок для размещения ИП в труднодоступных горных районах, а также затрат на обслуживание и эксплуатацию ИП.

При этом оценка маловысотного контура (МВК) при проведении испытаний будет получена не в полном объеме, так как выбранная «оптимальная» трасса не обеспечит исследование всех характеристик и будет по сути единственной, позволяющей выполнить оценку лишь в двух направлениях - туда и обратно. Порядок горных препятствий будет неизменным в соответствии с существующим горным рельефом полигона. Следует отметить, что в случае проведения оценки с использованием горного полигона задача обеспечения безопасности полета становится важнейшим фактором успешного проведения испытаний и потребует создания полномасштабного полунатурного стенда для проверки отказобезопасности контура управления МВП при вводе отказов различного рода (проверки в летных испытаниях недопустимы, ввиду возможности потери объекта), потребует и проверки адекватности модели «рельеф-среда-ЛА». Каждый элемент модели при этом будет иметь свои допущения, что, в конце концов, приведет к наличию неисследованных характеристик МВП. Вместе с тем, имеется банк основных аэродинамических характеристик с учетом особенностей компоновки объекта, но, что более важно, отработана сама методика расчетов, что позволяет двигаться в направлении создания методического аппарата оценки эффективности комплексов с беспилотными ЛА (БЛА) и пилотируемыми ЛА на ранних стадиях проектирования.

Отсутствие испытательных полигонов и специализированного оборудования внешнетраекторных измерений для проведения испытаний МВК управления ЛА в режиме МВП обуславливают необходимость разработки менее затратного, безопасного с точки зрения недопущения столкновения с препятствием и более приближенного к реальным полетам метода оценки МВК с применением «виртуальных» полигонов. Интеграция современных бортовых технологий измерения и методов воспроизведения поля рельефа местности позволят создать технологию синтеза виртуальных полигонов, разработать соответствующие методики наземных и летных испытаний МВК управления ЛА с существенно меньшими затратами. Предъявляемые сегодня на испытания перспективные ЛА военного назначения имеют высокоточные бортовые измерительные системы, регистрация данных которых (после подтверждения их точностных характеристик) может рассматриваться в качестве траекторных измерений в испытательных полетах. Понятие «виртуального» полигона можно представить, например, следующим образом. Полет на оценку МВК выполняется в условиях равнинной местности при отсутствии каких-либо опасных препятствий. К географическим координатам (ϕ, λ), определенным навигационной системой на борту ЛА, добавляются смещения Δϕ, Δλ, таким образом, чтобы положение ЛА относительно цифровой карты реальной местности (ЦКМ) соответствовало положению ЛА на испытательной трассе виртуальной местности (слабопересеченная, холмистая, горная местность, цепь гор, водная поверхность и т.д.). Локатор переднего обзора и радиовысотомер при этом могут работать в обычном режиме в интересах обеспечения безопасности полета над реально пролетаемым рельефом местности. Последовательно меняя трассы от простой к сложной, можно будет получить характеристики МВК и ЛА в режиме МВП (точностные, устойчивости и управляемости, срабатывания средств обеспечения безопасности и др.) до проведения полетов по реальным трассам. Предложенный подход к созданию информационного обеспечения испытаний МВК ЛА ранее не применялся. В методике не нашли отражения задачи полунатурного моделирования.

Известен способ проверки контура маловысотного полета путем имитационного моделирования, приведенный в книге: Современные информационные технологии в задачах навигации и наведения беспилотных маневренных ЛА. / Под редакцией Красильщиков М.Н., Серебрякова Г.Г. // М.: ФИЗМАТЛИТ, 2009 г., с. 476-516.

Однако приведенный в указанной книге метод позволяет лишь проверить работоспособность алгоритмического и программного обеспечения контура маловысотного полета.

Существуют множество программных комплексов моделирования, авиасимуляторов, разработанных с целью исследования поведения систем автоматического управления в различных режимах полета. Например, X-Plane - авиационный симулятор, разрабатываемый и распространяемый компанией Laminar Research.

При помощи указанных авиасимуляторов осуществляют проверку законов управления и эффективности программно-математического обеспечения, но отсутствует возможность оценки МВК реальных ЛА с применением «виртуальных» полигонов для повышения эффективности испытаний МВК в реальных полетах.

Существует способ построения трехмерных моделей подстилающей поверхности, описанный в статье: К.А. Мамросенко, В.Н. Решетников, Моделирование подстилающей поверхности в имитационных системах. / Программные продукты и системы. // №4(112), 2015 г.

Из-за большого числа специальных файлов приведенная в указанном выше способе модель является вычислительно сложной и очень громоздкой в связи с большим числом точек: на больших моделях подстилающей поверхности (>3 км) необходимо вводить дополнительные ограничения. Необходимо отметить, что на снимках будут видны объекты, находящиеся на поверхности Земли: деревья, дома, тени от домов, самолеты и другие. Для некоторых участков необходима очистка изображений от подобных объектов, такая работа, как правило, выполняется вручную и весьма трудоемка. Для формирования рельефа подстилающей поверхности возможно использование данных, полученных с помощью радарной топографической съемки Shuttle radar topographic mission (SRTM). При моделировании ландшафта с использованием данных SRTM возможно некорректное отображение местности. Например, прибрежный обрыв может быть смоделирован как пологий берег. Такое возможно, например, в случае недостаточного разрешения исходных данных, что приводит к интерполяции данных.

Цель изобретения - снижение материальных затрат и времени для создания виртуального рельефа местности для моделирования маршрутного маловысотного полета.

Поставленная цель достигается за счет того, что согласно заявленному способу построения маршрута маловысотного полета на виртуальном полигоне, содержащему моделирование виртуальной карты рельефа местности, использование динамической модели испытуемого ЛА, дополнительно содержит разложение заданного маршрута горного рельефа на N, (например, на 16) элементарных звеньев (фиг. 1-16), под которыми понимаются элементы подстилающего рельефа, расположенного на траектории полета, с характеристиками, заданными в тактико-техническом задании (ТТЗ).

Элементарное звено №1 - равнина, элементарное звено №2 - минимальный передний склон с заданным углом Өпс мин, элементарное звено №3 - максимальный передний склон с заданным углом Өпс макс, элементарное звено №4 - минимальный передний склон с выходом на равнину, элементарное звено №5 - максимальный передний склон с выходом на равнину, элементарное звено №6 - максимальный передний склон с прямым задним склоном, элементарное звено №7 - минимальный передний склон с максимальным задним склоном, элементарное звено №8 - максимальный передний склон с минимальным задним склоном, элементарное звено №9 - два последовательно стоящих одинаковых препятствия, элементарное звено №10 «суша-море», элементарное звено №11 «море-суша», элементарное звено №12 - два последовательно стоящих препятствия с высотой вершин 1/2Нрел и Нрел, элементарное звено №13 - два последовательно стоящих препятствия с высотой вершин Нрел и 1/2Нрел, элементарное звено №14 - два последовательно стоящих препятствия на расстоянии L друг от друга, элементарное звено №15 - два последовательно стоящих препятствия с высотой вершин 1/2Нрел и Нрел на расстоянии L друг от друга, элементарное звено №16 - два последовательно стоящих препятствия с высотой вершин Нрел и 1/2Нрел на расстоянии L друг от друга.

Совокупность звеньев, расположенных в любом порядке, формирует горный рельеф, который ЛА должен облететь на заданной высоте Нэш эшелона МВП. Выполняют МВП над каждым звеном последовательно во всем разрешенном высотно-скоростном диапазоне МВП. Разработанный маршрут привязывают к географическим координатам (ϕ, λ), определенным навигационной системой на борту ЛА.

«Звеньевой» метод построения маршрута маловысотного полета (МВП) предполагает построение траектории полета над рельефом местности в виде произвольной последовательности элементарных звеньев - участков рельефа с параметрами, заданными в ТТЗ на летательный аппарат (ЛА). Для каждого элементарного звена отдельно определяется область f(H, Vпр) возможного выполнения МВП. Совокупность таких областей фактически формирует общую область возможности выполнения МВП над заданным рельефом местности, зная которую, с использованием современных цифровых вычислительных машин (ЦВМ) (наземных и бортовых), возможно проложить маршрут полета ЛА в режиме МВП.

Принцип работы способа построения маршрута маловысотного полета на виртуальном полигоне поясняются чертежами: фиг. 1 - элементарное звено №1 - равнина, фиг. 2 - элементарное звено №2 - минимальный передний склон, фиг. 3 - элементарное звено №3 - максимальный передний склон, фиг. 4 - элементарное звено №4 - минимальный передний склон с выходом на равнину, фиг. 5 - элементарное звено №5 - максимальный передний склон с выходом на равнину, фиг. 6 - элементарное звено №6 - максимальный передний склон с прямым задним склоном, фиг. 7 - элементарное звено №7 - минимальный передний склон с максимальным задним склоном, фиг. 8 - элементарное звено №8 - максимальный передний склон с минимальным задним склоном, фиг. 9 - элементарное звено №9 - два последовательно стоящих одинаковых препятствия, фиг. 10 - элементарное звено №10 «суша-море», фиг. 11 - элементарное звено №11 «море-суша», фиг. 12 - элементарное звено №12 - два последовательно стоящих препятствия с высотой вершин 1/2Нрел и Нрел, фиг. 13 - элементарное звено №13 - два последовательно стоящих препятствия с высотой вершин Нрел и 1/2Нрел, фиг. 14 - элементарное звено №14 - два последовательно стоящих препятствия на расстоянии L друг от друга, фиг. 15 - элементарное звено №15 - два последовательно стоящих препятствия с высотой вершин 1/2Нрел и Нрел на расстоянии L друг от друга, фиг. 16 - элементарное звено №16 - два последовательно стоящих препятствия с высотой вершин Нрел и 1/2Нрел на расстоянии L друг от друга, фиг. 17 - маршрут полета при наличии на прямой траектории АБ препятствий, превышающих требования ТТЗ.

Построение маршрута (фиг. 17) осуществляют таким образом, чтобы в результате смены курса характеристики ЛА, определенные «звеньевым» методом, позволяли преодолевать препятствие с заданной точностью, а налет на препятствие осуществлялся с креном не более 7°. Варьируя параметры nумин, nумакс, Vпр, определяющие величину стыковочной дальности Lст, возможно построение нескольких маршрутов движения ЛА из точки А в точку Б. При этом радиус зоны безопасного выполнения маневра для смены курса (d=f(Vпр, γЛА, ΔZ)) должен обеспечивать завершение маневра на дальности не менее Lст до следующего препятствия с выходом в горизонтальный полет (ГП) (γ<7°) на заданной высоте эшелона.

При построении маршрута МВП необходимо осуществить выбор безопасной высоты эшелона МВП и определить максимально возможное отклонение ЛА от линии заданного пути в процессе полета между двумя соседними промежуточными пунктами маршрута (НИМ) МВП.

Рассмотрим этап определения безопасной высоты эшелона.

При полете в режиме МВП с кренами не более 7° (фактически прямо-линейный полет) с включенным автоматом управления тягой (АУТ) высота безопасного эшелона будет складываться из следующих составляющих:

где:

Нэш БП - безопасная высота при выполнении МВП;

Нэш зад - заданная высота эшелона МВП;

ΔНотк - запас высоты при отказе элементов МВК (определяется в процессе стендовой отработки отказобезопасности контура МВК);

ΔНпргр - запас высоты, обусловленный погрешностью используемого датчика измерения высоты (по результатам оценки в летных испытаниях).

Истинная высота полета ЛА будет определяться величиной безопасной высоты эшелона и высотой подстилающего рельефа:

Изменение курса при выполнении МВП приводит к необходимости создания кренов более 7°, что в свою очередь допускает потерю высоты. Данный факт должен учитываться при определении безопасной высоты МВП. В этом случае в соотношении (1) добавляется составляющая, обусловленная потерей высоты из-за наличия крена.

где ΔHγ - потеря высоты, обусловленная наличием крена.

Полет выполняется в режиме выдерживания заданного курса, то есть с кренами не более 7° (соответствует режиму стабилизации заданного курса в автоматическом режиме управления «Стабилизации заданных углов»). Построение элементарных звеньев обеспечивается при помощи бортовой вычислительной машины над равнинной поверхностью, чем достигается полная безопасность выполнения оценки во всем эксплуатационном диапазоне МВП, включая проверку отказобезопасности контура в реальном полете. Оценке подлежат следующие типовые элементарные звенья (фиг. 1-16) с параметрами:

Нэш - высота заданного эшелона в МВП;

Өпс мин - минимальный угол переднего склона;

Өпс макс - максимальный угол переднего склона;

Өзс мин - минимальный угол заднего склона;

Өзс макс - максимальный угол заднего склона;

Нрел - высота рельефа;

Lст - стыковочная дальность.

В результате оценки всех предложенных звеньев для каждого звена формируется высотно-скоростная область конкретного ЛА, обеспечивающая безусловный облет препятствия. Совокупность звеньев, расположенных в любом порядке, формирует горный рельеф, который ЛА способен облететь на заданной высоте эшелона МВП.

Достоинством «звеньевого» метода оценки является дешевизна, безопасность выполнения полетов, полнота оценки характеристик МВП, возможность оценки отказобезопасности МВК в полете, возможность создания полной адекватной модели «рельеф-среда-ЛА», которая обеспечит точное моделирование МВП перед выполнением полета над реальным горным рельефом, возможность создания банка данных для автоматизации выбора и математического расчета маршрута МВП с использованием наземных и бортовых вычислительных ресурсов, что в свою очередь позволит обеспечить безопасность МВП над выбранным горным рельефом.

Техническим результатом использования «виртуальных» полигонов являются: использование штатных бортовых информационных систем вместо моделей; воздействие на ЛА реальных возмущений (турбулентность атмосферы, близость «земной поверхности» и т.д.), кроме того, возмущение достаточно просто сымитировать; отсутствие необходимости в разработке модели рельефа местности и нештатного цифрового вычислителя на борту ЛА; возможность проведения обучения и тренажа летного состава в реальных полетах; оценка летным составом эргономики МВК; возможность оценки срабатывания средств безопасности и динамики выполнения увода с опасной высоты Ноп при наличии достаточного запаса по высоте; возможность использования полученных результатов после проверки гипотезы эргодичности рельефа для статистической обработки материалов испытаний; снижение количества полетов, необходимых для оценки МВК в условиях горной местности; увеличение времени испытательного полета и снижение расхода топлива (отсутствие необходимости полета на горный полигон и обратно - полеты выполняются в условиях равнины) и, как следствие, уменьшение общего количества испытательных полетов на оценку МВК.

Способ построения маршрута маловысотного полета на виртуальном полигоне, включающий в себя моделирование виртуальной карты рельефа местности, использование динамической модели испытуемого ЛА, полет по заданному маршруту, отличающийся тем, что дополнительно содержит разложение заданного маршрута горного рельефа на N элементарных звеньев, под которыми понимаются элементы подстилающего рельефа, расположенные на траектории полета, с характеристиками, заданными в тактико-техническом задании (фиг. 1-16), например, элементарное звено №1 - равнина, элементарное звено №2 - минимальный передний склон с заданным углом Θпс мин, элементарное звено №3 - максимальный передний склон с заданным углом Θпс макс, элементарное звено №4 - минимальный передний склон с выходом на равнину, элементарное звено №5 - максимальный передний склон с выходом на равнину, элементарное звено №6 - максимальный передний склон с прямым задним склоном, элементарное звено №7 - минимальный передний склон с максимальным задним склоном, элементарное звено №8 - максимальный передний склон с минимальным задним склоном, элементарное звено №9 - два последовательно стоящих одинаковых препятствия, элементарное звено №10 - «суша-море», элементарное звено №11 - «море-суша», элементарное звено №12 - два последовательно стоящих препятствия с высотой вершин 1/2Нрел и Нрел, элементарное звено №13 - два последовательно стоящих препятствия с высотой вершин Нрел и 1/2Нрел, элементарное звено №14 - два последовательно стоящих препятствия на расстоянии L друг от друга, элементарное звено №15 - два последовательно стоящих препятствия с высотой вершин 1/2Нрел и Нрел на расстоянии L друг от друга, элементарное звено №16 - два последовательно стоящих препятствия с высотой вершин Нрел и 1/2Нрел на расстоянии L друг от друга, при помощи приведенных звеньев, расположенных в нужном порядке, формируют горный рельеф с параметрами, заданными в ТТЗ на летательный аппарат (ЛА), разработанный маршрут привязывают к географическим координатам (ϕ, λ), определенным навигационной системой на борту ЛА, для каждого элементарного звена отдельно определяется область f(H, Vпр) возможного выполнения МВП, совокупность таких областей фактически формирует общую область возможности выполнения МВП над заданным рельефом местности, зная которую, с использованием современных цифровых вычислительных машин (ЦВМ) (наземных и бортовых), возможно проложить маршрут полета ЛА в режиме МВП.



 

Похожие патенты:

Изобретение относится к конструкции и оборудованию малых спутников модульного типа (формата CubeSat) и их моделям, используемым в учебных целях. Спутник-конструктор (СК) содержит базовую модульную платформу для формирования узлов и систем СК, бортовую сеть, не менее одного центрального процессора (одноплатного компьютера), работающего на библиотеках высокого уровня, модуль управления и связанные с ним модуль УКВ-канала связи и модуль Wi-Fi канала связи, а также служебные системы, допускающие выбор и/или замену элементов.

Учебный стенд-тренажер газораспределительного механизма двигателя внутреннего сгорания с возможностью отработки и закрепления навыков выполнения основных видов работ по ремонту и техническому обслуживанию газораспределительного механизма, содержащий каркас, выполненный в виде стулообразной сварной конструкции из квадратной трубы, на котором при помощи штатных болтов неподвижно закреплена комплектная головка блока цилиндров автомобиля ВАЗ с клапанной крышкой.

Предлагаемое изобретение относится к области радиосвязи и направлено на сокращение сроков подготовки специалистов связи. Технический результат предлагаемого изобретения направлен на приобретение специалистами навыков обеспечения связи в сложных условиях, приближенных к реальным, на этапе тренажерного обучения.

Изобретение относится к средствам подготовки оперативного персонала энергетического оборудования, а также персонала, выполняющего ремонт и техобслуживание технологического оборудования, персонала выполняющего настройку и оптимизацию системы управления энергетическим оборудованием (АСУТП).

Предложенное изобретение относится к области технических средств обучения мобильных групп и преимущественно может быть использовано для обучения в области безопасности жизнедеятельности и формирования навыков, необходимых в реальных условиях деятельности спасательных формирований.

Изобретение относится к моделирующим устройствам. Имитатор цели с механическим доворотом содержит антенну-излучатель, основную каретку, установленную на неподвижные направляющие с зубчатой рейкой, приводной электродвигатель с редуктором и приводной шестерней каретки, дополнительную каретку с закрепленной на ней мелкомодульной зубчатой рейкой, деталями приборной передачи.
Изобретение относится к оториноларингогии, в частности к симуляционному обучению эндоскопической хирургии среднего уха. Предложена симуляционная система для освоения навыков эндоскопической тимпанопластики на искусственных физических моделях, выполненных для освоения технических навыков мирингопластики и оссикулопластики ех vivo, отличающаяся тем, что содержит искусственную физическую модель, выполненную из височной кости бараньей головы с анатомо-топографическим соответствием височной кости человека.

Изобретение относится к мостостроению, а именно - к установлению значения пропускной способности мостовых переходов из механизированных мостов военного назначения.

Группа изобретений относится к области медицины и предназначено для предоперационного планирования и проведения тренировочной хирургической операции, а именно лапароскопической нефрэктомии, с использованием трехмерной модели пациента, сгенерированной по данным исследования пациента.

Изобретение относится к средствам подготовки оперативного персонала энергетического оборудования, а также персонала, выполняющего ремонт и техобслуживание технологического оборудования.

Изобретение относится к области обработки цифровых данных. Технический результат заключается в уменьшении времени между регистрацией межгрупповой транзакции в группе отправления и регистрации межгрупповой транзакции в группе назначения при сохранении безопасности транзакций.

Изобретение относится к области моделирования объектов энергетических систем. Техническим результатом является обеспечение воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов функционирования многотерминальной передачи постоянного тока и функционирование конструктивных элементов системы.

Изобретение относится к механизму идентификации текстового поля. Технический результат заключается в расширении арсенала средств для идентификации текстовых полей.

Изобретение относится к области организации схем сетевого обмена данными между множеством устройств, в частности для обмена данными между устройствами интернета вещей (IoT).

Изобретение относится к области вычислительной техники. Техническим результатом является снижение пространства памяти, занимаемого XML-файлом, в контейнере печатающего материала, выполненном для установки в принтер.

Изобретение относится к способу предупреждения попадания летательного аппарата в вихревой след самолета-генератора вихрей. Для реализации способа получают информацию о конфигурации, местонахождении и ориентации летательного аппарата и самолета-генератора вихрей, а также информацию о параметрах окружающей среды в текущий момент времени, определяют геометрические характеристики опасной зоны вихревого следа, представляют визуальную информацию экипажу о риске попадания в опасную зону вихревого следа определенным образом.

Изобретение относится к способу предупреждения попадания летательного аппарата в опасную зону вихревого следа генератора вихрей. Способ заключается в том, что получают информацию о конфигурации, местонахождении, ориентации летательного аппарата, информацию о положении, геометрических и массовых характеристиках и о параметрах движения генератора вихрей в текущий момент времени, информацию о параметрах окружающей среды, определяют геометрические размеры опасной зоны вихревого следа, представляют визуальную информацию экипажу определенным образом.

Изобретение относится к выравниванию объектов в слайдовой презентации. Технический результат – облегчение выравнивания при отображении направляющих выравнивания.

Изобретение относится к области кодирования аудио и речи. Технический результат – обеспечение эффективного сокращения объема вычислений при преобразовании коэффициентов линейного предсказания.

Изобретение относится к способу, применению способа, компьютерному носителю данных и симулятору для определения отклонений формы. Технический результат заключается в повышении эффективности процесса определения отклонения формы.
Наверх