Способ измерения электропроводности тонких металлических пленок

Изобретение относится к контрольно-измерительной технике и может применяться для бесконтактного измерения удельной электрической проводимости тонких металлических пленок толщиной от 0,05 до 5 мкм. Cпособ измерения электропроводности тонких пленок представляет собой оценку усредненной амплитуды сигнала вихретокового преобразователя с использованием измерительной системы, являющейся программно-аппаратным комплексом, включающей в себя персональный компьютер и программное обеспечение, а также блоки генерации, усиления и фильтрации. Согласно изобретению используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала, подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображаются на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, а электропроводность f(x) тонкой металлической пленки находят из уравнения f(x)=0,0809х-0,3696, где х - разность амплитуд двух сигналов С1 и С2. Изобретение обеспечивает снижение погрешности измерения электропроводности тонких пленок, имеющих малый коэффициент отражения, путем применения вихретокового метода с последующей аппаратной и программной обработкой, позволяющей проводить математическую обработку получаемого сигнала. 3 ил., 1 табл.

 

Изобретение относится к контрольно-измерительной технике и может применяться для бесконтактного измерения удельной электрической проводимости тонких металлических пленок толщиной от 0,05 до 5 мкм.

Актуальность данного изобретения обусловлена необходимостью оперативного и точного контроля электромагнитных параметров материалов в процессе их производства и эксплуатации.

Известно устройство, предназначенное для измерения электропроводности диэлектрического материала (в том числе тонких пленок), включающее в себя генератор, приемник и излучатель электромагнитного сигнала, волновые тройники, фазовращатель, аттенюатор, детектор и блок обработки информации (Пат.RU 2528130 С1 МПК G01N 22/04, G01R 27/26 опубл. 10.09.2014). Недостатком устройства является влияние подложки пленки на результаты измерений. Это снижает точность измерений и требует дополнительной программной обработки для устранения помех, вносимых подложкой.

Прототипом заявляемого изобретения является устройство измерения электрической проводимости материалов с кюветой для контролируемой пленки, помещаемой в датчики, входы которых соединены с питающим генератором, а выходы - с блоком обработки (Пат.RU 156519 МПК G01R 27/00, В82В 1/00 опубл. 10.11.15). Устройство бесконтактного контроля электромагнитных параметров тонких пленок и наноматериалов содержит генератор, сигнал с выхода которого приходит на излучатель электромагнитного сигнала, и блок обработки. На пути следования сигнала к объекту контроля расположен разветвитель сигнала, один из выходов которого индуктивно соединен с приемником первоначального сигнала, выход которого подключен к одному из входов измерителя амплитуды и фазы, второй вход которого подключен к выходу приемника отраженного от объекта контроля сигнала, а выход измерителя амплитуды и фазы подключен к входу блока обработки и входу блока управления, выход которого подключен к генератору. Очевидна недостаточная точность измерений при контроле пленок, имеющих малый коэффициент отражения для выбранной длины волны излучения. Это связано с тем, что отраженный сигнал несет в себе информацию не только о контролируемом материале, но и о подложке, так как прошедший через пленку зондирующий сигнал отражается также и от подложки, накладывается на сигнал, отраженный от поверхности пленки, и искажает тем самым информационную картину процедуры измерения.

Технической задачей изобретения является снижение погрешности измерения электропроводности тонких пленок, имеющих малый коэффициент отражения, путем применения вихретокового метода с последующей аппаратной и программной обработкой, позволяющей проводить математическую обработку получаемого сигнала.

Заявляемый способ измерения электропроводности тонких пленок представляет собой оценку усредненной амплитуды двух сигналов вихретокового преобразователя (первый сигнал - от исследуемого образца тонкой металлической пленки, второй сигнал - от подложки), полученных с использованием измерительной системы, являющейся программно-аппаратным комплексом, включающим персональный компьютер и программное обеспечение, а также блоки генерации, усиления и фильтрации.

Способ осуществляется следующим образом: в работе используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки: задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображается на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, в качестве параметра, несущего информацию об электропроводности пленки (σ, МСм/м), используют разность усредненных амплитуд (<ΔU>, мВ) двух сигналов С1 и С2, а электропроводность тонкой металлической пленки находят из экспериментально полученного уравнения вида f(x)=0,0809x-0,3696, где х - разность амплитуд Δ<U>двух сигналов С1 и С2.

Блок генерации 1 (фиг. 1) осуществляет управление генератором 2, производящим формирование сигнала и, предварительно усилив с использованием усилителя 3, передающего его на возбуждающие катушки вихретоковых преобразователей 4, 5. Первый вихретоковый преобразователь размещают над электропроводящей металлической тонкой пленкой, размещенной на подложке, второй вихретоковый преобразователь размещают над подложкой (без металлической тонкой пленки). Возбуждающие катушки вихретоковых преобразователей при прохождении сигнала формируют электромагнитное поле, возбуждающее вихревые токи в тонкой металлической пленке, размещенной на подложке и в подложке. Электромагнитное поле вихревых токов воздействует на измерительные катушки 6, 7 вихретоковых преобразователей, наводя в них электродвижущие силы (ЭДС), несущие информацию об электропроводности подложки и тонкой металлической пленки в виде сигналов С1 и С2 соответственно. Сигналы усиливаются в усилителе 8 и проходят через блоки фильтрации 9, управляемые программным блоком фильтрации 10, связанным с программным блоком генерации 1. Изменение частоты фильтрации происходит одновременно с изменением частоты генерации. Сигналы передаются на амплитудный детектор 11, через аналого-цифровой преобразователь 12, в программный блок обработки сигнала 13, где происходит вычисление усредненной амплитуды сигнала С1 и С2, затем происходит вычисление разности усредненной амплитуды сигнала С1 и амплитуды сигнала С2, после чего результаты измерений выводятся на экран персонального компьютера в виде графика и значения разности усредненных амплитуд сигналов. Полученное значение разности усредненных амплитуд сигналов сравнивается с эталонными значениями, заложенными в программное обеспечение, после чего производится определение электропроводности исследуемой пленки и вывод значения электропроводности на экран. Заявляемый способ отличается от прототипа:

• Измерением исключительно амплитуды сигнала, производимым детектором с линейной характеристикой преобразования.

• Наличием автоматического синхронного изменения рабочих частот сигнала с генератора и частот фильтрации принимаемого сигнала.

В качестве параметра, несущего информацию об электропроводности пленки, используется значение разности усредненных амплитуд сигналов от преобразователя, расположенного над тонкой металлической пленкой и преобразователем, расположенным над подложкой.

За счет использования сигналов от двух вихретоковых преобразователей, с возможностью быстрого и одновременного изменения рабочей частоты приборы и частоты фильтрации, удается избавиться от влияния зазора между вихретоковым преобразователем и контролируемым изделием при проведении измерений. Использование в качестве информативного параметра разности усредненных амплитуд сигналов позволяет реализовать измерительную систему без внесения погрешностей от подложки тонкой пленки с использованием исключительно амплитудного метода контроля. За счет вычитания амплитуд сигналов, несущих информацию о подложке и пленке, становится возможным повысить помехозащищенность сигнала, несущего информацию об объекте контроля.

Пример осуществления способа. В приспособлении для напыления первым закрепляется нагреватель, на поверхность которого наносится 0,005-0,01 г напыляемого сплава, затем над ним закрепляется Pt-Pd-подложка, которая помещается в стандартный держатель вакуумной камеры. Для улучшения электрического контакта и устранения прогибов нагревателя и подложки перед пропусканием тока через образец кратковременно (200-250 мс) включается система нагружения установки, после этого закрывается крышка вакуумной камеры, производится откачка системы до остаточного давления 10-3-10-4 Па. После откачки камеры осуществляется нагрев испарителя и подложки до температуры белого каления платины 3200°С путем пропускания постоянного тока 100 А напряжением 4 В в течение 200-250 мс; затем система охлаждается в течение 2-5 мин, производится напуск воздуха в камеру, открывается крышка и извлекается образец. После этого образец исследовался с использованием разработанного способа.

Блок генерации 1 управляет генератором 2, который передает сигнал частотой fl на возбуждающие катушки 4, 5 вихретоковых преобразователей, которые создают электромагнитное поле, индуцирующее вихревые токи в электропроводящем объекте контроля. Сигналы проходят усилитель мощности 3, где их напряжение возрастает до 3 В, необходимых для проведения измерений и попадают на возбуждающие катушку 4, 5 вихретоковых преобразователей. В результате возбуждающие катушки создают магнитное поле, проникающее в исследуемую тонкую пленку и подложку. Магнитное поле наводит вихревые токи в исследуемом образце, которые, в свою очередь, наводят напряжение в измерительных катушках 6, 7. Напряжение в виде сигналов С1 и С2 несет информацию о подложке и тонкой пленке соответственно. Сигналы проходит через блок усиления 8 и переходит на блок фильтрации сигнала 9, управляемый программным блоком фильтрации 10, связанным с программным блоком генерации 1. Изменение частоты фильтрации происходит одновременно с изменением частоты генерации. Два сигнала передаются на амплитудный детектор 11, через аналого-цифровой преобразователь 12, в программный блок обработки сигнала 13 и результаты измерений выводятся на экран персонального компьютера в виде графика и значения разности усредненных амплитуд двух сигналов С1 и С2. Электропроводность (σ, МСм/м) определяется согласно экспериментально полученному уравнению f(x)=0,0809х-0,3696, по графику (фиг. 2.), построенному по образцам пленок с известной электропроводностью, где точка 1 соответствует образцу алюминия с электропроводностью 1 МСм/м и значения разности амплитуд сигнала 16,8 мВ, точка 2 соответствует образцу алюминия с электропроводностью 1,23 МСм/м и значения разности амплитуд сигнала 19,6 мВ. Пример распределения сигнала, полученного на образце тонкой пленки из алюминия с неизвестной электропроводностью, представлен на фиг. 3. В области А1 усредненная амплитуда сигнала составила 29 мВ, в области А2 - 10,8 мВ. Разница между амплитудой в области А1 и амплитудой в области А2 (Δ<U>) составляет 18,2 мВ. В соответствии с фиг. 2 подставляя полученную разницу в уравнение f(x)=0,0809х-0,3696, вычисляют значение электропроводности тонкой пленки из алюминия - 1,10278 МСм/м. Представленный способ применялся для измерения электропроводности тонких пленок, изготовленных из других проводящих материалов. Данные измерений представлены в табл. 1. При этом, разность амплитуд<AU>соответствовала переменной х, а электропроводность σ соответствовала f(x) в уравнении f(x)=0,0809х-0,3696.

Способ измерения электропроводности тонких металлических пленок, представляющий собой оценку значения разности усредненных амплитуд двух сигналов вихретоковых преобразователей с использованием измерительной системы, включающей вихретоковый преобразователь, блоки генерации, персональный компьютер и программное обеспечение, отличающийся тем, что в работе используют два вихретоковых преобразователя, причем управление сигналом на возбуждающих обмотках вихретоковых преобразователей и прием сигналов с измерительных обмоток вихретоковых преобразователей происходит с использованием микроконтроллера, позволяющего формировать сигнал, а программное обеспечение дополнительно включает блоки задачи частоты генерации и фильтрации; при этом сигналы С1 и С2 с измерительных обмоток, несущие информацию о состоянии исследуемого материала, подвергаются усилению и фильтрации и поступают на аналого-цифровой преобразователь и амплитудный детектор, а затем поступают в программный блок обработки сигнала, после чего отображаются на мониторе персонального компьютера, при этом сигнал С1 с измерительной обмотки первого преобразователя соответствует сигналу от подложки, а сигнал С2 с измерительной обмотки второго преобразователя соответствует сигналу от тонкой металлической пленки, при этом управление частотой генерации и частотой фильтрации осуществляется синхронно за счет связи программного блока генерации и блока фильтрации, управляемого программным блоком фильтрации, а электропроводность f(x) тонкой металлической пленки находят из уравнения f(x)=0,0809х-0,3696, где x - разность амплитуд двух сигналов С1 и С2.



 

Похожие патенты:

Изобретение относится к области электроизмерительной техники, а именно к измерению и контролю активной и реактивной составляющих полного сопротивления, в том числе двухполюсников, имеющих между полюсами ЭДС, например электрических машин переменного тока.

Изобретение относится к области испытательной техники и может быть использовано для измерения удельного электрического сопротивления металлических образцов в процессе растяжения при механических испытаниях.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками.

Изобретение относится к области физики, а именно к анализу материалов путем бесконтактного определения удельного электросопротивления нагреваемого в индукторе высокочастотного индукционного генератора металлического образца цилиндрической формы в диапазоне температур 1000-2500 К.

Изобретение относится к области электрических измерений и может быть использовано при эксплуатации, ремонте или сушке трансформаторов. Техническим результатом является снижение трудоемкости измерения активного сопротивления обмоток трансформатора.

Изобретение относится к измерительной технике, представляет собой способ автоматизированного измерения сопротивлений и может применяться для удаленного контроля сопротивлений в случае их соизмеримости с сопротивлением линий связи и коммутации.

Изобретение относится к электроизмерительной технике, в частности к электротензометрии, и может быть использовано в авиационной промышленности, машиностроении, строительстве для исследования прочности конструкций с помощью одиночного тензорезистора в частотном диапазоне от 0 до 5000 Гц и более при повышенном уровне мешающих факторов - электромагнитных помех и термоэ.д.с.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники.

Изобретение относится к измерительной технике. Устройство для увеличения разрешения распознавания сопротивления, содержащее: контроллер (108); источник (104) переменного тока, вырабатывающий переменный ток в ответ на значение тока, устанавливаемое контроллером; переменный резистор; и АЦП (106), который вырабатывает значение напряжения на основе переменного напряжения.

Изобретение относится к измерительной технике и может быть использовано для достоверного определения компонентного состава и концентраций примесей в жидких диэлектриках, применяемых в системе нефтепродуктообеспечения, медицине и научных исследованиях.

Группа изобретений относится к области обнаружения нарушений расположения волокон в проводящем композиционном материале. Способ обнаружения нарушений расположения волокон в проводящем композиционном материале с использованием проводящих волокон включает этап размещения катушки в положении, в котором катушка обращена к поверхности проводящего композиционного материала, так что торец катушки перпендикулярен указанной поверхности; этап размещения блока измерения магнитного поля в положении, в котором блок измерения магнитного поля обращен к поверхности проводящего композиционного материала, так что направление магниточувствительной оси горизонтально относительно указанной поверхности и параллельно торцу катушки; и этап обнаружения участка, на котором имеется нарушение расположения волокон в проводящем композиционном материале, посредством измерения магнитного поля с помощью блока измерения магнитного поля.

Система очистки и электромагнитной диагностики техсостояния стальных трубопроводов относится к области диагностики техсостояния. Система очистки и электромагнитной диагностики техсостояния стальных трубопроводов содержит в своем составе внутритрубный прибор для очистки и диагностики трубопровода, который содержит электромагнитную систему комплексной диагностики техсостояния трубопровода, обеспечивающую измерение толщины исследуемой трубы по секторам; измерение внутреннего профиля исследуемой трубы; обнаружение дефектов трубы типа отверстия, врезки, продольные и поперечные трещины; измерительную компьютизированную систему на станции управления прокачкой, включающую в себя компьютер, датчик давления и датчик расходомера; локатор с антенной для контроля истинного положения внутритрубного прибора; беспроводной канал связи между локатором и измерительной компьютизированной системой на станции управления прокачкой, для оперативного управления режимами прокачки.

Использование: для неразрушающего контроля труб. Сущность изобретения заключается в том, что измерительный тракт вихретокового дефектоскопа для контроля труб содержит вихретоковый преобразователь и генератор, соединенные с блоком обработки сигнала и управления дефектоскопа, генератор соединен с первой катушкой преобразователя, фазовращатель - со второй, рядом с которой соосно размещено токопроводящее немагнитное кольцо, и преобразователь связан одним измерительным каналом с блоком обработки сигнала и управления.

Группа изобретений относится к области неразрушающего контроля состояния стенок трубопроводов. Способ магнитного контроля дефектов трубопровода включает следующие этапы: намагничивание трубопровода по его длине при помощи излучающей катушки, установленной на торце трубопровода и соединенной с генератором широкополосного напряжения; измерение магнитного поля, созданного генератором широкополосного напряжения, при помощи датчика магнитного поля при его перемещении вдоль трубопровода; циркулярное намагничивание трубопровода путём пропускания через него импульсного тока при помощи генератора пилообразного напряжения, подключаемого между торцами трубопровода; измерение магнитного поля, созданного генератором пилообразного напряжения, при помощи датчика магнитного поля при его перемещении вдоль трубопровода; определение по данным измерения магнитного поля созданных полученных на этапах генератором широкополосного напряжения и генератором пилообразного напряжения, остаточной толщины стенки трубопровода и участков трубопроводов с напряжённо-деформированным состоянием.

Группа изобретений относится к области неразрушающего контроля состояния стенок трубопроводов. Способ магнитного контроля дефектов трубопровода включает следующие этапы: намагничивание трубопровода по его длине при помощи излучающей катушки, установленной на торце трубопровода и соединенной с генератором широкополосного напряжения; измерение магнитного поля, созданного генератором широкополосного напряжения, при помощи датчика магнитного поля при его перемещении вдоль трубопровода; циркулярное намагничивание трубопровода путём пропускания через него импульсного тока при помощи генератора пилообразного напряжения, подключаемого между торцами трубопровода; измерение магнитного поля, созданного генератором пилообразного напряжения, при помощи датчика магнитного поля при его перемещении вдоль трубопровода; определение по данным измерения магнитного поля созданных полученных на этапах генератором широкополосного напряжения и генератором пилообразного напряжения, остаточной толщины стенки трубопровода и участков трубопроводов с напряжённо-деформированным состоянием.

Изобретение относится к методам неразрушающего контроля металлических труб и может быть использовано для контроля их внутреннего диаметра. Сущность: внутри трубы размещают две пары расположенных соосно на фиксированном расстоянии один от другого накладных вихретоковых преобразователей при ортогональности общих осей каждой пары преобразователей.

Изобретение относится к методам неразрушающего контроля и позволяет исследовать упрочняющие боридные покрытия, нанесенные на основу из стали, и делать вывод о качестве покрытия на стали.

Изобретение относится к методам неразрушающего контроля и позволяет исследовать упрочняющие боридные покрытия, нанесенные на основу из стали, и делать вывод о качестве покрытия на стали.

Группа изобретений относится к области неразрушающего контроля изделий и может быть использована для дефектоскопии труб. Сущность изобретений заключается в том, что трубе придают вращательно-поступательное движение, намагничивают продольными и поперечным полями одновременно в двух местах трубы так, чтобы результирующий вектор магнитного поля был направлен в одном месте под углом 30-40 градусов относительно вертикальной плоскости, в которой расположена ось трубы, а в другом - под углом 50-60 градусов.

Группа изобретений относится к области неразрушающего контроля изделий и может быть использована для дефектоскопии труб. Сущность изобретений заключается в том, что трубе придают вращательно-поступательное движение, намагничивают продольными и поперечным полями одновременно в двух местах трубы так, чтобы результирующий вектор магнитного поля был направлен в одном месте под углом 30-40 градусов относительно вертикальной плоскости, в которой расположена ось трубы, а в другом - под углом 50-60 градусов.
Наверх