Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Авторы патента:

C25B1/14 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном потенциостатическом режиме из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с, при этом в качестве катода используют медную фольгу. Высокотемпературный электрохимический способ позволяет формировать кристаллы оксидных вольфрамовых бронз из нановискеров, которые имеют отношение длины к диаметру > 1000. 6 н.п. ф-лы, 6 ил.

 

Изобретение относится к области высокотемпературной электрохимии, в частности к получению кристаллов оксидных вольфрамовых бронз (ОВБ), состоящих из вискеров нанометровой толщины, имеющих отношение длины к диаметру >1000 (нановискеров), которые могут быть использованы в медицине, наноэлектронике, а также в химической промышленности при изготовлении ион-селективных элементов для анализа микросред, электрохромных устройств, катализаторов химических реакций.

В настоящее время к наноматериалам условно относят дисперсные и массивные материалы, содержащие структурные элементы (зёрна, кристаллиты, блоки, кластеры), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками.

Вискеры (от англ whisker – волос, шерсть; «усы», неорганические волокна) – это нитевидные кристаллы c диаметром от 1 до 10 мкм и отношением длины к диаметру >1000. С точки зрения, как фундаментальной науки, так и практики, вискеры являются одним из наиболее перспективных кристаллических материалов с уникальным комплексом свойств. Они, как правило, имеют совершенное, почти идеальное бездислокационное строение, что исключает обычные механизмы пластической деформации и приближает их прочность к теоретическому для данного вещества порогу. Вискеры в десятки и даже сотни раз прочнее обычных кристаллов, они обладают поразительной гибкостью, коррозионной стойкостью и кристаллографической анизотропией свойств. Подобная необычная форма кристаллов интересна не только с точки зрения исследования механизма ее образования, но и из-за своих специфических физико-химических характеристик, что делает весьма актуальными любые новые исследования в этой области. Представляя собой одномерную кристаллическую систему, вискеры могут найти широкий диапазон применений – от упрочняющих волокон до устройств наноэлектроники [1].

В работе [2] сказано: “Как ни странно, но до сих пор не существует воспроизводимых и относительно дешёвых способов получения вискеров химически сложного состава с желаемыми функциональными характеристиками. Для решения этой задачи, которая является одной из наиболее интересных в современном материаловедении, необходимо привлечение не только знаний, но и интуиции, всего имеющегося багажа экпериментальных наработок и даже фантазии”.

Известна высокая каталазная активность, проявленная нанокристаллическими ОВБ [3]. Оксидные вольфрамовые бронзы представляют собой нестехиометрические соединения с общей формулой MxWO3, где 0 < x < 1, M может быть 1-, 2-, 3-, 4-валентным элементом.

Для получения нанокристаллических оксидных вольфрамовых бронз используются различные способы. Например, в работе [4] нанокристаллы ОВБ получали выдержкой при 400°С в течение 2 часов тщательно помолотой порошковой смеси W–Cs(OH)2·H2O–H2WO4 в расплавленной эвтектической смеси LiCl–KCl. В результате было синтезировано соединение Cs0.32WO3 гексагональной структуры со средним размером частиц 291 нм. Длина и ширина этих кристаллов отличалась не более чем в 2 раза. В работе [5] наностержни тетрагональных вольфрамовых бронз щелочного металла были синтезированы стадийным восстановлением хлорида вольфрама (VI) натридом-(15-краун-5) калия (либо натридом-(18-краун-6) калия) в тетрагидрофуране. Толщина стержней составляла примерно 40 нм, а длина – 400 – 500 нм. То есть отношение длины к толщине составляло 10 – 12. В работе [6] нанонити тетрагональных калий-вольфрамовых бронз были синтезированы путем отжига при температуре 450°С, в течение 10 ч вольфрамовой фольги, предварительно обработанной ультразвуком в щелочном растворе. При этом получали нанопроволоки диаметром 50 – 200 нм и длиной 5 – 10 мкм, ориентированные случайным образом. Самая большая величина отношения длины к диаметру составляла 100, а среднее значение около 50. Преимущество электрохимического способа перед вышеперечисленными состоит в том, что он позволяет контролировать параметры процесса, сократить его продолжительность и, что особенно важно, управлять структурой и свойствами осадков.

Известен электрохимический способ получения игольчатых наноструктур оксидных вольфрамовых бронз [7]. В этом способе электролиз ведут в импульсном потенциостатическом режиме в расплаве, содержащем 30 мол.% К2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3 с использованием платинового анода и катода. При этом осаждение бронзы проводят на торце платиновой проволоки, вплавленной в тугоплавкое стекло. Осадок представляет собой игольчатое покрытие, где иглы были нанометровой толщины. Толщина игл составляет порядка 30 – 100 нм. Длина – около 10 мкм. Отношение длины к диаметру составляет 100 – 300. Таким образом, наноиглы, полученные данным способом, не относятся к кристаллам из нановискеров.

Известен также электрохимический способ получения наноигольчатых катализаторов окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз [8], включающий электролиз в импульсном потенциостатическом режиме при перенапряжении 170 – 300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, притом, что, процесс электроосаждения ведут на вольфрамовом катоде. Полученный этим способом материал представляет собой порошок бронзы гексагональной структуры, состоящий из микрокристаллов, где каждый микрокристалл – ориентированная наноигольчатая структура. Все иглы имеют одну ориентацию и вытянуты в направлении <0001>. Толщина игл составляет порядка 30 – 100 нм. Однако длина этих игл сравнительно небольшая и составляет около 4 мкм, т.е. отношение длины иголок к диаметру около 130, что не соответствует кристаллам из нановискеров.

Известным способом получения нановискерных структур оксидных вольфрамовых бронз на угольном материале [9], в котором электролиз ведут в импульсном потенциостатическом режиме при перенапряжении 300 мВ в расплаве, содержащем 30 мол. % K2WO4, 25 мол. % Li2WO4 и 45 мол. % WO3, с использованием платинового анода, получают осадки ОВБ на угольном материале, состоящие из вискеров, толщина которых лежит в интервале 30 – 150 нм, а длина достигает 5000 нм. Отношение длины вискеров к диаметру также имеет величину <1000.

Таким образом, в уровне техники не обнаружено сведений о способах получения кристаллов, состоящих из нановискеров, у которых отношение длины к диаметру >1000.

Технической задачей изобретения является разработка электрохимического способа формирования кристаллов ОВБ из нановискеров.

Поставленная задача решается шестью вариантами изобретений, включающих электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут в импульсном потенциостатическом режиме.

По первому варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с, при этом в качестве катода используют медную фольгу.

По второму варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –945 мВ и длительностью 0.5 с, при этом в качестве катода используют медную фольгу.

По третьему варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –895 мВ и длительностью 0.1 с, при этом в качестве катода используют медную фольгу.

По четвертому варианту электроосаждение ведут из расплава, содержащего 27.5 мол. % K2WO4, 27.5 мол. % Na2WO4 и 45 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –882 мВ и длительностью 0.2 с, при этом в качестве катода используют медную фольгу.

По пятому варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –895 мВ и длительностью 0.2 с, при этом в качестве катода используют никелевую фольгу.

По шестому варианту электроосаждение ведут из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с, при этом в качестве катода используют молибденовую фольгу.

Новый технический результат, достигаемый каждым из вариантов заявленного способа, заключается в получении кристаллов, состоящих из нановискеров, у которых отношение длины к диаметру >1000.

Изобретение иллюстрируется рисунками фиг. 1 – 6, на которых представлено СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, при этом изображения «а» и «б» каждой из фигур 1 – 6 иллюстрируют один и тот же кристалл ОВБ, при этом изображение «а» иллюстрирует общий вид осадка ОВБ на катоде, а совмещенное с ним изображение «б» – его увеличенный фрагмент.

На фиг. 1 представлено СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, Изобретение иллюстрируется рисунками, где на фиг. 1 представлено СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –855 мВ, 1 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 700ºС; на фиг. 2 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –945 мВ, 0.5 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 700ºС; на фиг. 3 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –895 мВ, 0.1 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 750ºС; на фиг. 4 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –882 мВ, 0.2 с, 27.5 мол. % K2WO4, 27.5 мол. % Na2WO4 и 45 мол. % WO3, Т = 700ºС; на фиг. 5 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –895 мВ, 0.2 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 700ºС; на фиг. 6 – СЭМ изображение кристаллов калий-натрий-вольфрамовых бронз тетрагональной структуры, состоящих из нановискеров, E = –855 мВ, 1 с, 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, Т = 700ºС.

Экспериментальную проверку способа осуществляли следующим образом. Электролиз проводили в трехэлектродной ячейке с использованием импульсного потенциостатического режима. Анодом служила платиновая проволока, электродом сравнения – платиновая фольга площадью 1 см2, полупогруженная в расплав, а катодом – медная или никелевая или молибденовая фольга площадью 1.2 см2. Контейнером являлся платиновый тигель. Температуру процесса поддерживали постоянной: 700 или 750°C. Для проведения эксперимента электрохимическую ячейку помещали в шахтную печь, температуру в которой поддерживали с помощью терморегулятора «Варта ТП 703». Вблизи электродов (в электролите) температуру измеряли с помощью платина-платинородиевой термопары. Электроосаждение проводили с помощью потенциостата-гальваностата Autolab PGSTAT302N (Metrohm, Netherlands) с программным обеспечением Nova 1.9.

По окончании опыта катодный осадок отмывали в щелочном растворе (10–15 мас.% KOH) комнатной температуры в течение 12 ч, затем промывали дистиллированной водой и спиртом. Морфологию осадков изучали с помощью электронного микроскопа JSM-5900 LV (Jeol, Japan). Для определения фазового состава катодных продуктов проводили рентгеноструктурный анализ образцов на установке RIGAKU D/MAX-2200VL.

Пример 1. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на медном катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с. При этом на электроде образуется осадок ОВБ (фиг. 1). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.475WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 2. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на медном катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –945 мВ и длительностью 0.5 с. При этом на электроде образуется осадок ОВБ (фиг. 2). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.475WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 3. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на медном катоде, при 750°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –895 мВ и длительностью 0.1 с. При этом на электроде образуется осадок ОВБ (фиг. 3). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.475WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 4. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 27.5 мол. % K2WO4, 27.5 мол. % Na2WO4 и 45 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на медном катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –882 мВ и длительностью 0.2 с. При этом на электроде образуется осадок ОВБ (фиг. 4). Диаметр нановискеров составляет около 20 нм, а длина кристаллов, состоящих из этих нановискеров, более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 5. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на никелевом катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –895 мВ и длительностью 0.2 с. При этом на электроде образуется осадок ОВБ (фиг. 5). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.39Na0.27WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Пример 6. Кристаллы ОВБ тетрагональной структуры, состоящие из нановискеров, получали из расплава, содержащего 25 мол. % K2WO4, 25мол.% Na2WO4 и 50 мол. % WO3, с использованием платинового анода, процесс электроосаждения вели на молибденовом катоде, при 700°C. На ячейку подавали одиночный импульс напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с. При этом на электроде образуется осадок кристаллов ОВБ (фиг. 6). Рентгеноструктурным анализом установлено, что кристаллы бронзы имеют тетрагональную структуру и изоструктурны соединению K0.39Na0.27WO3. Кристаллы состоят из нановискеров, диаметр которых около 20 нм, а длина более 20 мкм. Таким образом, соотношение длины нановискера к диаметру >1000.

Полученные данные подтверждают, что заявленным высокотемпературным электрохимическим способом можно формировать кристаллы ОВБ из нановискеров.

Источники информации:

1. Померанцева Е.А., Гудилин Е.А., Кривецкий В.В. Неорганические волокна. «Немного о химии усов» http://www.chem.msu.su/rus/teaching/goodilin1/whiskers.pdf.

2. Богатство наномира. Фоторепртаж из глубин вещества/под редакцией Ю.Д.Третьякова.-М.:Бином. Лаборатория знаний. 2010. -171с.

3. Вакарин С.В., Меляева А.А., Семерикова О.Л., Кондратюк В.С., Панкратов А.А., Плаксин С.В., Поротникова Н.М., Зайков Ю.П., Петров Л.А., Микушина Ю.В., Шишмаков А.Б., Чупахин О.Н. Каталазная активность крупнозернистых и наноразмерных оксидных вольфрамовых бронз, полученных электролизом расплавленных солей // Известия АН. Сер. хим., 2011. № 10. С. 1951–1954.

4. Li C., Kang L., Zhu Y., Wang Q., Zhao X., He H., Tian D., Liu J., Low-temperature Atmosphere-free Molten Salt Synthesis of NIR-shielding CsxWO3. Nano Adv., 2017, 2, 47−52.

5. Zivkovic О., Yan С. Wagner M. J. Tetragonal alkali metal tungsten bronze and hexagonal tungstate nanorods synthesized by alkalide reduction. Journal of Materials Chemistry, 2009, 19, 6029–6033.

6. Zheng Z., Yan B., Zhang J., You Y., Lim C. T., Shen Z., Yu T. Potassium Tungsten Bronze Nanowires: Polarized Micro-Raman Scattering of Individual Nanowires and Electron Field Emission from Nanowire Films. Adv. Mater., 2008, 20, 352–356.

7. RU2354753, публ. 10.05.2009.

8. RU 2456079 публ. 20.07.2012.

9. RU 2525543, публ. 20.08.2014.

1. Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров, включающий электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном потенциостатическом режиме из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с, при этом в качестве катода используют медную фольгу.

2. Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров, включающий электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном потенциостатическом режиме из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –945 мВ и длительностью 0.5 с, при этом в качестве катода используют медную фольгу.

3. Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров, включающий электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 750°C в импульсном потенциостатическом режиме из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –895 мВ и длительностью 0.1 с, при этом в качестве катода используют медную фольгу.

4. Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров, включающий электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном потенциостатическом режиме из расплава, содержащего 27.5 мол. % K2WO4, 27.5 мол. % Na2WO4 и 45 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –882 мВ и длительностью 0.2 с, при этом в качестве катода используют медную фольгу.

5. Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров, включающий электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном потенциостатическом режиме из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –895 мВ и длительностью 0.2 с, при этом в качестве катода используют никелевую фольгу.

6. Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров, включающий электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном потенциостатическом режиме из расплава, содержащего 25 мол. % K2WO4, 25 мол. % Na2WO4 и 50 мол. % WO3, с одиночным импульсом напряжения прямоугольной формы величиной –855 мВ и длительностью 1 с, при этом в качестве катода используют молибденовую фольгу.



 

Похожие патенты:

Изобретение относится к области нанотехнологии и может быть использовано для получения нанокомпозитных материалов для создания источников питания, работающих в экстремальных условиях.

Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка - оксида алюминия (корунда), и может быть использовано в металлообрабатывающей, машиностроительной, химико-металлургической промышленности.

Изобретение относится к технологическим процессам, касающимся выделения из растворов солей в виде кристаллической массы, и предназначено для нереагентного изменения способности кристаллогидратов металлов регулировать инициирование зародышей и таким образом управлять числом зародышей и размерами выделяющихся кристаллов..

Настоящее изобретение относится к способу формирования сильнолегированного серой микроструктурированного кристаллического слоя на поверхности кремния, который может быть использован в солнечной энергетике, оптоэлектронике, приборах ночного и тепловидения.

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора.

Изобретение относится к способам получения монолитных соединений стержней из поликристаллических алмазов, предназначенных для использования в производстве приборов электроники, оптики, СВЧ-техники, в частности для изготовления диэлектрических опор в лампах бегущей волны (ЛБВ), использующих низкий коэффициент поглощения на частотах генерации.

Изобретение относится к технологии получения декоративных покрытий при окраске металлических изделий в различные цвета и создания высокотехнологичных оптоэлектронных устройств с применением элементов, способных отражать или пропускать свет с определенной настраиваемой длиной волны.

Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле.

Изобретение относится к технологии получения алмазов. Искусственные алмазы получают из графита на подложке в присутствии электродов путем расположения графита на подложке, являющейся электродом с отрицательным зарядом, расположенной в кварцевой пробирке, и при нагреве до 1000°C при атмосферном давлении в радиационной печи.

Изобретение может быть использовано в медицине при производстве препаратов для послеоперационной поддерживающей терапии. Проводят термическое разложение метана в герметичной камере на подложках из кремния или никеля при давлении 10-30 Торр и температуре 1050-1150 °С.

Изобретение относится к способу электрохимической обработки воды дезинфектантами в виде гидроксильного радикала (ОН), атомарного кислорода (О), кислорода (O2), озона (O3), перекиси водорода (H2O2), хлорноватистой кислоты HClO и гипохлорит-иона ClO-, включающему введение в обрабатываемую воду дезинфектантов, получаемых путем прямого электролиза в проточном режиме обрабатываемой воды, содержащей 0,1÷20 мг/л хлорида натрия.

Изобретение может быть использовано в металлургической и машиностроительной областях промышленности при электрохимической очистке сточных вод. Устройство для очистки сточных вод асимметричным током содержит электролизер (3), управляемый источник питания электролизера (1), формирующий прямой и обратный токи, соединенный с коммутатором тока (2), подключенным к электродам электролизера (3), вибрационный блок электролизера (6), блок датчиков контроля состава сточных вод (4), поступающих на обработку, и блок управления источником питания электролизера (1), коммутатором тока (2) и блоком датчиков контролируемых параметров очистки сточных вод (5).

Изобретение относится к двум вариантам газогенератора. Один из вариантов содержит: устройство для электролиза, предназначенное для электролиза подвергаемой электролизу воды, вызывающего генерацию газа, содержащего водород; бак для воды, предназначенный для доставки подвергаемой электролизу воды в устройство для электролиза; конденсационный фильтр, предназначенный для поступления в него газа, содержащего водород, и отфильтровывания примесей газа, содержащего водород, и предназначенный для поступления в него подпиточной воды для осуществления смыва примесей; увлажняющее устройство, предназначенное для увлажнения газа, содержащего водород; и емкость для смешивания, предназначенная для поступления газа, содержащего водород, и смешивания газа, содержащего водород, с распыленным газом.
Изобретение относится к нерасходуемому аноду для электролиза, содержащему углерод. При этом он изготовлен из пироуглерода (пирографита).

Изобретение может быть использовано в пчеловодстве. Устройство для получения дезинфицирующих растворов для пасеки содержит диэлектрический корпус 1, катодную 6 и анодную 5 камеры с катодом 20 и анодом 17, диафрагму, деструктор озона 12, источник тока 19, озонатор 8, компрессор 9, датчик температуры 14, контроллер 15, расположенную на дне корпуса 1 сообщенную с озонатором 8 трубку с верхними отверстиями 11, расположенными вдоль нее, электромагнитное реле 21.

Изобретение относится к устройствам для электрохимической обработки воды в протоке с повышенным сроком сохранения свойств обработанной воды и может быть использовано в медицинской, сельскохозяйственной, пищевой и косметической промышленности, а также в быту.

Изобретение относится к устройствам для электрохимической обработки воды в протоке и может быть использовано в медицинской, сельскохозяйственной, пищевой и косметической промышленности, а также в быту.

Изобретение относится к области фармацевтической химии и технологии, а именно к синтезу 1,20-дибром-3,6,9,12,15,18-гексаоксаперфтор-4,7,10,11,14,17-гексаметилэйкозана, используемого для получения оксигенирующих прямых эмульсий медицинского и биотехнологического назначения, например для лечения ожогов.

Изобретение относится к области электролиза воды и может быть применено в энергетической отрасли. Способ получения обогащенной кислородом и обогащенной водородом воды включает помещение в емкость с водой изолированных и неизолированных электродов, подачу постоянного напряжения на электроды, при этом положительный потенциал подают на изолированные электроды для обогащения воды кислородом.
Изобретение относится к области нанотехнологий, а именно к способам получения наноразмерных материалов, которые могут служить фотокатализаторами в процессах окисления органических загрязнений, присутствующих в воде и воздухе, и может быть использовано в химической, фармацевтической и текстильной промышленности.

Изобретение относится к области синтеза новых материалов и может быть использовано в деятельности, связанной с добычей полезных ископаемых, с обрабатывающими производствами, с медицинской промышленностью, для элементов конструкций и механизмов, требующих высокой износостойкости поверхностей.
Наверх