Способ увеличения размеров алмазов



Способ увеличения размеров алмазов
Способ увеличения размеров алмазов

 


Владельцы патента RU 2585634:

Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) (RU)

Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле. Способ включает осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, при этом затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана. Технический результат заключается в существенном увеличении исходных кристаллов алмаза в групповом процессе за значительно более короткое время технологического цикла. 2 ил., 1 пр.

 

Изобретение относится к области получения синтетических алмазов и может быть использовано для увеличения размеров исходных кристаллов алмаза с целью применения их для различных технических нужд, например, в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле.

В настоящее время для синтеза алмазов в промышленности используется метод детонации, что сопряжено с применением высокоактивных взрывчатых веществ (смесь тротила с гексогеном).

Известен способ получения наноалмазов (Патент РФ №2230702, МПК С01В 31/06, опубл. 20.06.2004 г.) [1], основанный на использовании детонации, что сопряжено с применением взрывчатых веществ. Заряд взрывчатого вещества помещают внутрь ледяной бронировки в герметичной взрывной камере и производят его подрыв, затем полученную суспензию наноалмазов в воде сливают в приемную емкость, отделяют наноалмазы и подвергают очистке. Недостатками известного метода являются использование взрывчатых веществ, низкая воспроизводимость и трудность очистки синтезированных алмазов от продуктов распада взрывчатой смеси. Кроме того, по способу [1] возможно получение лишь мелкодисперсных алмазов, непригодных для применения в ювелирных целях.

Известен способ пиролитического выращивания нанокристаллических слоев графита (Патент РФ №2429315, МПК С30В 30/02, B82B 3/00, C30B 29/02, C01B 31/04, опубл. 20.09.2011) [2], включающий нагрев пластин из углеродного материала в герметичной водоохлаждаемой камере прямым пропусканием электрического тока и термическое разложение метана в зазоре между пластинами с осаждением нанокристаллических слоев углерода на подложках из кремния, размещенных в зазоре, причем температуру подложки поддерживают в пределах 1200-1350°C, а давление метана - от 10 до 30 Торр.

Способ [2] позволяет получать алмазы лишь наноразмерного уровня в матрице пирографита, что делает невозможным применение их в ряде технических областей и в ювелирных целях.

Наиболее близким по технической сущности к заявляемому и принятым за прототип является способ эпитаксиального выращивания алмаза, включающий осаждение углерода на затравочный кристалл алмаза (Патент РФ №2008258, МПК С01В 31/06, С30В 23/02, С30В 29/04, опубл. 28.02.1994) [3]. При осуществлении способа на поверхность затравочного кристалла алмаза наносят слой металла-катализатора, помещают его в кварцевую ампулу, содержащую аморфный углерод в форме сажи, вакуумируют и запаивают ампулу, а затем выдерживают ее при температуре 700°С в течение 100 часов.

Недостатками способа [3] являются низкая производительность, а также длительное время изотермической выдержки. Кроме того, маловероятно, что при столь низкой температуре в среде вакуума аморфный углерод способен превращаться в алмаз, поскольку это противоречит данным диаграммы состояния графит-алмаз (возможно, такое превращение может быть объяснено предварительным нанесением на затравочный кристалл хрома в качестве металла-катализатора). Увеличение массы затравочного кристалла после цикла обработки в соответствии с формулой изобретения по данным приведенной в описании патента [3] таблицы крайне незначительно.

Главными отличительными признаками заявляемого способа увеличения размеров алмазов являются использование большого количества затравочных кристаллов алмаза, метана в качестве поставщика углерода и электрического поля, способного ускорять ионы углерода и создавать большое локальное давление при их соударении с затравочными кристаллами, а также поливинилацетата в качестве исходной матрицы для затравочных кристаллов.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в существенном увеличении размеров исходных кристаллов алмаза в групповом процессе за значительно более короткое время технологического цикла.

Для достижения названного технического результата в известном способе, включающем осаждение углерода на затравочные кристаллы алмазов при их нагреве, при этом затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при низком давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.

Термическое разложение метана в зазоре между углеродными плоскими электродами с осаждением атомов углерода на затравочных кристаллах алмаза, приводит к увеличению их размеров и объединению в крупные агрегаты. При термическом разложении метана в возникшем электрическом поле ионы углерода приобретают кинетическую энергию, позволяющую им создавать при контакте с растущим слоем давление до 20 ГПа, что сопоставимо, а по некоторым данным и превышает давление, достигаемое при подрыве тротила. Температуру подложек поддерживают в пределах 1170±20°С, а давление метана - от 10 до 30 Торр.

Атомарный водород эффективно травит растущий пиролитический углерод с образованием в газовой фазе комплексов C2H2 и CH3, но практически не взаимодействует с алмазом, что обеспечивает преимущество росту именно алмазов. Поливинилацетат [-СН2-СН(ОСОСН3)-]n, окружающий затравочные кристаллы алмаза, при указанной выше температуре также является источником углерода.

В реакционной камере в зазоре между двумя плоскими электродами расположена пластина кремния с нанесенными на ее поверхность с помощью поливинилацетата кристаллами (порошком синтетических алмазов). После герметизации и откачки реакционной камеры, включили нагрев нижнего плоского электрода до получения температуры кремниевой пластины 1170±20°С, напустили метан квалификации ВЧ до давления 25 Торр. Затем подали напряжение 80 В между плоскими электродами. Периодически с частотой 30 минут проводили откачку реакционных продуктов и напуск свежего метана. Общая длительность операционного цикла составила 3,5 часа. После извлечения кремниевой пластины на ее верхней плоскости обнаружен светлый слой пирографита толщиной 400±50 мкм с характерным металлическим блеском, содержащий большое количество выступающих над его поверхностью блестящих включений размерами от 1,5 до 3,5 мм.

Микрофотография исходных алмазов, полученная с помощью оптического микроскопа, приведена на Фиг. 1.

Оптическая микрофотография поверхности материала приведена на Фиг. 2.

Пример использования способа

В зазоре между двумя лентами: нижней (выполненной из 2-х слоев гибкой углеродной фольги и подключенной к выходным шинам силового трансформатора) и верхней (выполненной из 1-го слоя гибкой углеродной фольги, изолированной от нижней ленты и соединенной с регулируемым источником электрического напряжения) шириной 120 мм и длиной 230 мм каждая, установили пластину из монокристаллического кремния диаметром 100 мм. Предварительно полированная верхняя плоскость пластины была покрыта слоем поливинилацетата, на который нанесли порошок синтетических алмазов АСМ 28/20. После герметизации и откачки реакционной камеры включили нагрев путем пропускания тока через нижнюю ленту, затем в нее напустили метан квалификации ВЧ до давления 25 Торр. Температура пластины кремния достигла значения 1170±20°C. Затем подали напряжение 80 В между верхней и нижней лентами. Общая длительность операционного цикла составила 3,5 часа. При этом циклически проводили откачку реакционных продуктов и напуск свежего метана. После извлечения кремниевой пластины на ее верхней плоскости обнаружен светлый слой пирографита толщиной 400±50 мкм с характерным металлическим блеском, содержащий большое количество выступающих над его поверхностью блестящих включений размерами от 1,5 до 3,5 мм. При микроскопическом исследовании выявлены агрегаты увеличенных в размере исходных затравочных алмазов, соединенных слоями синтезированной в ходе проведения термообработки в среде метана и использовании электрического поля алмазоподобной фазы. Размеры исходных затравочных алмазов (в среднем 20 мкм) увеличились после проведенных обработок в 2-3 раза.

Способ увеличения размеров алмазов, включающий осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, отличающийся тем, что затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.



 

Похожие патенты:

Изобретение относится к технологии получения алмазов. Искусственные алмазы получают из графита на подложке в присутствии электродов путем расположения графита на подложке, являющейся электродом с отрицательным зарядом, расположенной в кварцевой пробирке, и при нагреве до 1000°C при атмосферном давлении в радиационной печи.

Изобретение может быть использовано в медицине при производстве препаратов для послеоперационной поддерживающей терапии. Проводят термическое разложение метана в герметичной камере на подложках из кремния или никеля при давлении 10-30 Торр и температуре 1050-1150 °С.

Изобретение относится к технологии получения чистых веществ, используемых в отраслях высоких технологий: полупроводниковой, солнечной энергетики, волоконно-оптической связи.

Изобретение относится к области полупроводникового материаловедения и может быть использовано для получения отдельных кристаллов и массивов оксида цинка для применения в качестве активных элементов, материала для фотокаталитической очистки сред, пьезоэлектрических датчиков, а также для фундаментальных исследований кинетики роста кристаллов.

Изобретение относится к области получения наноалмазов, представляющих интерес для использования в послеоперационной поддерживающей терапии. .

Изобретение относится к области получения монокристаллических слоистых пленок графита на полупроводниковых подложках, представляющих интерес для использования в производстве приборов оптоэлектроники.

Изобретение относится к хлорсилановой технологии получения поликристаллического кремния и может быть использовано в производстве полупроводниковых материалов и электронных приборов.

Изобретение относится к получению поликристаллического кремния газофазным осаждением на нагретые подложки и может быть использовано для производства полупроводниковых материалов, солнечных элементов и в микроэлектронике.

Изобретение относится к области получения пленок фотонных кристаллов. .

Изобретение относится к технологии выращивания монокристаллов методом Чохральского. .

Изобретение относится к области технологии тонкопленочных материалов и может быть использовано при создании пассивных и активных элементов микро- и оптоэлектронных устройств.
Изобретение относится к поликристаллическому алмазу для использования в различных инструментах. Поликристаллический алмаз характеризуется тем, что содержит алмазные спеченные зерна, имеющие средний диаметр зерна более 50 нм и менее 2500 нм, чистоту 99% или более и диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,9) или менее, причем поликристаллический алмаз обладает пластинчатой структурой и имеет твердость 100 ГПа или более.

Изобретение относится к технологии обработки монокристаллического CVD-алмазного материала. Описан способ введения NV-центров в монокристаллический CVD-алмазный материал.

Изобретение относится к процессу синтеза множества синтетических монокристаллических алмазов. Способ включает формирование множества затравочных подушек, каждая из которых содержит множество затравочных монокристаллов алмаза, прикрепленных к инертному держателю или внедренных в него, загрузку источника углерода, металлического катализатора и множества затравочных подушек в капсулу, при этом, по меньшей мере, часть источника углерода располагается на расстоянии менее 0,1 мм от затравочных монокристаллов алмаза, загрузку капсулы в пресс высокого давления и высокой температуры (ВДВТ) и подвергание капсулы циклу ВДВТ-роста для выращивания монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза, причем цикл ВДВТ-роста включает инициирование ВДВТ-роста монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза путем увеличения давления и температуры, поддержание ВДВТ-роста монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза посредством управляемого давлением процесса роста путем управления и поддержания давления и температуры и прекращение ВДВТ-роста монокристаллического алмазного материала на множестве затравочных монокристаллов алмаза путем уменьшения давления и температуры, при этом множество затравочных монокристаллов алмаза остаются прикрепленными к инертным держателям или внедренными в них во время цикла ВДВТ-роста.

Изобретение относится к технологии обработки алмаза и может быть использовано в микроэлектронной технике СВЧ. Способ обработки поверхности алмаза включает взаимное расположение в одной плоскости исходной поверхности алмаза и металлической поверхности из стали, обеспечение непосредственного контакта упомянутых поверхностей, термическую обработку исходной поверхности алмаза на заданную глубину, обеспечивающую заданную конечную поверхность алмаза, при этом предусматривающую нагрев упомянутых поверхностей до температуры образования эвтектического сплава железо - углерод, выдержку при этой температуре и естественное охлаждение, причем металлическую поверхность из стали берут с содержанием углерода 3,9-4,1 мас.

Изобретение относится к электронной технике и может быть использовано при разработке технологии алмазных электронных приборов увеличенной площади. Способ включает закрепление на подложке монокристаллических алмазных пластин с ориентацией поверхности (100) и последующее нанесение на пластины эпитаксиального алмазного слоя, при этом перед закреплением на подложке на каждой монокристаллической алмазной пластине предварительно сполировывают края, создавая усеченную четырехгранную пирамиду с верхней плоскостью, ориентированной по кристаллографической плоскости (100), и с четырьмя боковыми гранями, ориентированными по плоскостям типа {311}, каждую усеченную пирамиду соединяют с подложкой таким образом, чтобы усеченные пирамиды соприкасались друг с другом своими боковыми гранями, а затем наносят на усеченные пирамиды алмазный эпитаксиальный слой.

Изобретение относится к нанотехнологиям материалов. Способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом в концентрации от 22 мас.

Изобретение относится к получению искусственного алмаза, который может быть использован в тяжелой промышленности. Перед загрузкой в пресс фуллерен С60 выдерживают в течение 30 минут в потоке водорода, затем помещают в контейнер из пирофиллита один или вместе с поли[гидридо(Н)карбином] в соотношении 1:1, а затем нагружают квазигидростатическим давлением 3-5 ГПа при температуре 973-1173 К.

Изобретение относится к технологии получения монокристаллического, полученного химическим осаждением из газовой фазы (ХОГФ), синтетического алмазного материала, который может быть использован в качестве квантовых датчиков, оптических фильтров, частей инструментов для механической обработки и исходного материала для формирования окрашенных драгоценных камней.

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов.

Изобретение относится к производству независимых подложек из нитрида III группы для применения в области электроники и оптоэлетроники. Способ получения независимой подложки 100 из нитрида III группы включает осаждение первого слоя 102 нитрида III группы на подложку 101 для выращивания, формирование в первом слое 102 механически ослабленного жертвенного слоя 110, осаждение второго слоя 107 нитрида III группы на первый слой 102 и отделение второго слоя 107 от подложки 101 по механически ослабленному жертвенному слою 110, при этом стадия формирования механически ослабленного жертвенного слоя 110 включает образование вертикальных отверстий 105, проходящих вниз от свободной поверхности первого слоя 102 нитрида III группы к границе раздела 109 между первым слоем 102 и подложкой 101, латеральное травление, через отверстия 105, первого слоя 102 в указанной граничной области 109 и латеральное заращивание отверстий 105 на стадии осаждения второго слоя 107 для обеспечения непрерывного слоя.
Наверх