Способ определения угловой ориентации наземного транспортного средства

Изобретение относится к гироскопическому приборостроению и может быть использовано в наземных транспортных средствах (ТС) для непрерывного определения угловой ориентации (курса, крена, тангажа) движущегося ТС. Способ определения угловой ориентации ТС включает начальную выставку стабилизированной платформы (СП) трехосного гиростабилизатора в плоскость горизонта и ориентацию по странам света, управление СП сигналами, пропорциональными угловой скорости вращения Земли и интегрированной информации с акселерометров. Во время стоянки на начальном участке управления СП проводится настройка системы, в ходе которой определяются константы погрешностей начальной угловой выставки приборной системы координат в опорной системе координат и погрешности угловых скоростей. В процессе управления СП в каждом цикле цифровым вычислительным комплексом (ЦВК), с использованием внешней информации текущих значений географических координат транспортного средства, проводится расчет поправочных значений угловых отклонений приборной системы координат от опорной системы координат с учетом нестабильности погрешностей всех элементов схемы управления СП в реальном масштабе времени. Полученные в каждом цикле ЦВК значения поправок используются для компенсации погрешностей инерциальной навигационной системы и точного определения угловой ориентации транспортного средства по тангажу, рысканию и курсу с учетом информации с датчиков углов. Технический результат - уменьшение погрешности определения угловой ориентации наземного ТС в процессе движения с учетом нестабильности погрешностей чувствительных элементов в реальном масштабе времени. 3 ил.

 

Изобретение относится к гироскопическому приборостроению и может быть использовано в наземных транспортных средствах (ТС) для непрерывного определения угловой ориентации (курса, крена, тангажа) движущегося ТС.

Из уровня техники известны следующие способы определения угловой ориентации движущегося транспортного средства.

Способ выработки навигационных параметров и вертикали места, заключающийся в формировании сигналов, пропорциональных соответствующим проекциям вектора кажущегося ускорения, измеренных при помощи акселерометров, установленных по каждой оси приборного трехгранника, связанного с гироплатформой, формировании сигналов управления гироплатформой, удерживании гироплатформы в плоскости горизонта и выработке вертикали места и навигационных параметров на основе сигналов управления, пропорциональных соответствующим проекциям вектора угловой скорости приборного трехгранника и с учетом оценки их погрешностей, путем сравнения значений одноименных выходных параметров различных контуров интегрирования кинематических уравнений приборного трехгранника, выработанных на основе сигналов, пропорциональных сумме соответствующих проекций вектора угловой скорости приборного трехгранника и соответствующих дополнительных сигналов, величины и закон изменения которых предварительно задаются или устанавливаются с помощью устройства выработки навигационных параметров, благодаря чему схемными средствами обеспечивается уменьшение влияния погрешностей инерциальной системы на выходные навигационные параметры и вертикаль места. [1]

Способ инерциальной навигации, включающий измерение сигналов с акселерометров, формирование отсчетной системы координат, вычисление выходных навигационных параметров системы, отличающийся тем, что вычисляют выходные параметры навигационной системы по эталонной модели, вычисляют соответствующие им входные сигналы с акселерометров для эталонной модели, в которой разворачивают отсчетную систему координат на фиксированные углы относительно отсчетной системы координат навигационной системы, вычисляют сигналы с акселерометров, получаемые путем перепроектирования сигналов с акселерометров навигационной системы на развернутую на те же фиксированные углы систему координат эталонной модели, затем по значениям вычисленных сигналов с акселерометров для эталонной модели и сигналов с акселерометров, полученных путем перепроектирования, определяют угловой дрейф отсчетной системы координат навигационной системы и осуществляют коррекцию углового положения отсчетной системы координат навигационной системы. [2]

Эти способы имеют 2 основных недостатка, которые не позволяют обеспечить заданную точность:

1. В способах определяется влияние различных погрешностей на ошибки навигационной системы и вводится компенсация, основываясь на их неизменности. Реальная аппаратура имеет нестабильные погрешности и учет их изменения в процессе движения ТС является основной задачей разработчика автономной навигационной системы или систем выработки угловой ориентации ТС.

2. Реальная аппаратура формирует выходную информацию с большим уровнем помех из-за наличия вибрации и ударов в процессе движения ТС. Непрерывное выполнение вычислений по предложенным способам в этих условиях - невозможно.

Наиболее близким к предлагаемому техническому решению является способ, изложенный в [3]. Суть способа состоит в формировании на основе общих уравнений ошибок, упрощенных моделей, описывающих ошибки инерциальной навигационной системы (ИНС), справедливых для различных условий эксплуатации (движение с небольшими постоянными скоростями υ≤500 км/ч относительно Земли, в течение 1 часа, 2-2,5 часов, а также ускоренного движения объекта). Определении погрешностей навигационных параметров ИНС, на основе использования информации, поступающей от внешних по отношению к ней датчиков, и их оценка волновыми алгоритмами оценивания и алгоритмами предельного перехода, и алгоритмической компенсации данных погрешностей ИНС.

Применение вышеописанных способов позволяет решать, как прямую задачу определения навигационных параметров, так и обратную - определения угловой ориентации транспортного средства, с погрешностями ИНС. Данные способы весьма трудоемки, имеют весомые погрешности, и достоверные значения определяются с большим запаздыванием, что не соответствует современным требованиям к системе определения угловой ориентации ТС, которые предполагают вычисление этих параметров в процессе движения непрерывно и с запаздыванием не более 0,06 сек. Коррекция погрешностей навигационных параметров ИНС, изложенная в [3] проводится не в реальном масштабе времени.

Задачей предлагаемого изобретения является разработка способа определения угловой ориентации ТС с меньшими погрешностями в реальном масштабе времени с использованием внешней информации текущих значений географических координат широты и долготы.

Поставленная задача решается тем, что предложен способ определения угловой ориентации ТС, включающий начальную выставку стабилизированной платформы (СП) трехосного гиростабилизатора (ТГС) в плоскость горизонта и ориентацию по странам света, управление СП сигналами, пропорциональными угловой скорости вращения Земли и интегрированной информации с акселерометров. Во время стоянки на начальном участке управления СП проводится настройка системы, в ходе которой определяются константы погрешностей начальной угловой выставки приборной системы координат в опорной системе координат и погрешности угловых скоростей. В процессе управления СП в каждом цикле цифровым вычислительным комплексом (ЦВК), с использованием внешней информации текущих значений географических координат транспортного средства, проводится расчет поправочных значений угловых отклонений приборной системы координат от опорной системы координат с учетом нестабильности погрешностей всех элементов схемы управления СП в реальном масштабе времени. Полученные в каждом цикле ЦВК значения поправок используются для компенсации погрешностей инерциальной навигационной системы и точного определения угловой ориентации транспортного средства по тангажу, рысканию и курсу с учетом информации с датчиков углов.

Погрешности ИНС, реализованной приборным трехгранником гироплатформы, ориентированной по странам света и местной вертикали, в условиях стабильности собственных дрейфов гироблоков и использовании внешней информации текущих значений широты и долготы движущегося ТС, компенсируются вырабатываемыми поправками, с учетом нестабильности погрешностей всех элементов схемы управления гироплатформы в реальном масштабе времени, которые в виду особенности управления, в режиме обратной связи по информации сигналов с акселерометров [4], приводятся к погрешностям углов по трем осям, а значит и к изменению величины проекции ускорения силы тяжести(g) на измерительные оси акселерометров.

На фиг. 1 приведена структурная схема ТГС, для которой применяется предлагаемый способ, где:

XПYПZП - приборная система координат (ПСК), связанная с СП;

XКYКZК - система координат, связанная с корпусом прибора и транспортным средством, ввиду жесткой связи прибора и ТС;

В, Р, Т - оси вращения, рыскания и тангажа, проходящие через рамы карданова подвеса;

ГБ X, ГБ Y, ГБ Z - двухстепенные поплавковые интегрирующие гироскопы, расположенные по осям ХП, YП и ZП соответственно;

X, Z - акселерометры, расположенные по осям ХП и ZП соответственно;

ДК В, ДК Р, ДК Т - датчики команд, расположенные по осям В, Р и Т карданова подвеса соответственно;

ДУ В, ДУ Р, ДУ Т - датчики углов, расположенные по осям В, Р и Т соответственно.

ТГС содержит СП, расположенную в трехосном кардановом подвесе, с установленными на каждой из его осей датчиками углов (ДУ) и датчиками команд (ДК). На СП установлены два акселерометра и три двухстепенных поплавковых интегрирующих гироскопа, которые образуют правую прямоугольную систему координат параллельную осям ПСК. Гироскопы на осях прецессии имеют датчики момента (ДМ) и датчики углов прецессии (ДУП), входящие в систему стабилизации ТГС и систему приведения. Формирование сигнала управления СП реализуется ЦВК.

На фиг. 2 показана взаимосвязь ПСК (XПYПZП) и опорной системы координат (ОСК) (XOYOZO) полуаналитической ИНС, где:

XO - горизонтальная ось ОСК, направленная на Север;

YO - ось направленная по местной вертикали;

ZO - дополняет систему координат до правой;

ωX, ωY, ωZ - проекции угловой скорости СП относительно осей ХП, YП, ZП;

αХ, αY, αZ - углы рассогласования ПСК и ОСК по осям X, Y, Z.

На фиг. 3 приведена схема устройства реализации способа определения угловой ориентации наземного транспортного средства, которое включает в себя ТГС (ДУ В, ДУ Р, ДУ Т, ДМ ГБ X, ДМ ГБ Y, ДМ ГБ Z, акселерометры X и Y), внешний навигационный датчик (ГЛОНАСС, GPS и т.п.) и ЦВК. ЦВК содержит блок формирования сигнала управления стабилизированной платформой, блок расчета относительных скоростей транспортного средства, блок расчета констант настройки и поправочных значений угловых отклонений ориентации приборной системы координат от опорной системы координат и блок расчета угловой ориентации транспортного средства. β, Ψ, K - это углы отклонения системы координат связанной с корпусом прибора от ОСК по тангажу, рысканью и курсу соответственно, и идентичны углам отклонения ТС от ОСК, ввиду жесткой связи прибора и ТС.

Управление СП, выставленной в плоскость горизонта и ориентированной по странам света, для сохранения положения ПСК в ОСК, осуществляется вырабатываемыми в ЦВК управляющими сигналами, пропорциональными угловой скорости вращения Земли и интегрированной информации с акселерометров X, Z. При этом СП должна разворачиваться относительно инерциальной системы координат (ИСК) с угловыми скоростями:

, где: , , - угловые скорости вращения СП относительно ИСК;

Ω - угловая скорость вращения Земли;

В, L -информация текущих значений географических координат широты и долготы ОСК, поступающая от внешнего навигационного датчика (ГЛОНАСС, GPS и т.п.);

VX, VZ - проекции относительной (путевой) скорости ТС на оси X и Z ОСК, рассчитанные по информации акселерометров X и Z;

RN и RE - кривизна поверхности в текущей точке на эллипсоиде Красовского в направлениях Север-Юг и Запад-Восток в плоскостях сечений эллипсоида, проходящих через ось YO.

В процессе управления СП, в каждом цикле в ЦВК вычисляются:

1. sin В, cos В - значения функций синуса и косинуса широты;

2. ΔВ, ΔL - полные приращения географических координат широты и долготы;

3. VX, VZ - проекции путевой скорости ТС;

4. RN и RE - по информации текущей широты;

5. - ускорение Кориолиса.

Проекции относительной скорости ТС на оси ХО и ZO (VX, VZ) определяются интегрированием информации с соответствующих акселерометров о кажущемся ускорении с учетом ускорения Кориолиса по оси Z ОСК:

Ускорение Кориолиса суммируется с кажущимся ускорением при движении ТС в северном полушарии, так как оно направлено влево от вектора скорости перемещения ТС и практически не влияет на параметры движения, но воспринимается акселерометром, расположенным по оси Z СП.

Вычисление погрешностей ИНС происходит с учетом констант ошибок начальной ориентации по углам и угловым скоростям по 3-м осям, определенными на коротком интервале времени во время стоянки ТС, с текущими значениями Vx(z) и ΣVx(z), вычисляемыми по информации с акселерометров, а также внешней информацией текущих значений широты и долготы, в условиях стабильности собственных дрейфов гироблоков.

При идеальном управлении, то есть при отсутствии любых погрешностей в аппаратуре, относительная угловая скорость приборной системы координат в опорной системе координат будет равна нулю и будет сохраняться начальное совпадение ПСК и ОСК.

Начальная выставка обычно имеет погрешности по углам и угловым скоростям. Угловые погрешности вызывают возмущения в системе управления СП в виде проекций ускорения силы тяжести (g) на оси X и Z ПСК и проекций угловой скорости вращения Земли (Ω) на все оси ПСК.

Погрешности начальной угловой скорости сохраняются на протяжении всего времени навигации.

Обозначив углы рассогласования ПСК и ОСК как αХ, αZ и αY, соответствующие угловым отклонениям измерительных осей акселерометров X, Z от ОСК и датчику угла оси YП СП, а погрешности угловых скоростей как δωХ, δωY и δωZ, можно записать значения относительных угловых скоростей ωX, ωY и ωZ, соответственно осям СП ХП, YП, ZП, согласно схеме, представленной на фиг. 2:

Учитывая, что где Тц - время цикла ЦВК,

i - индекс текущего операнда, (i-1) - индекс предыдущего операнда, и приведя к виду удобному для интегрирования на ЦВК, получим математическую модель погрешностей, определяющих положение ПСК относительно ОСК в условиях стоянки:

, где: Vx(z) - проекции относительной скорости ТС на оси X и Z ОСК, рассчитанные по информации с акселерометров X и Z в процессе управления СП на стоянке, в каждом цикле ЦВК;

- константы погрешностей начальной угловой выставки ПСК в ОСК.

Имея , можно записать в виде:

Проинтегрировав (4), подставив в правую часть (5) и, учтя изменение широты и долготы в условиях движения, получим поправочные значения угловых отклонений ориентации ПСК от ОСК

, где: индекс П - поправочное значение угловых отклонений ПСК от ОСК;

ΔLi, ΔBi - текущие (полные) изменения географических координат широты и долготы движущегося ТС.

Формулы (6) позволяют вычислять поправочные значения угловых отклонений ориентации ПСК от ОСК в процессе движения ТС, используя константы δωZ, δωХ и δωY, измеряемые при настройке, во время управления СП сигналами, пропорциональными угловой скорости вращения Земли и интегрированной информации с акселерометров X, Z в первые несколько секунд работы, используя текущие значения широты и долготы, поступающие от внешнего навигационного датчика, а также текущие значения VX(Z)i, вычисляемые в каждом цикле ЦВК во время управления СП, с учетом нестабильности погрешностей всех элементов схемы управления СП в реальном масштабе времени.

Нестабильность погрешностей чувствительных элементов и тракта управления гироплатформой, входящих в систему, вызывают, как правило, изменение значений VXi и VZi, которые вычисляются с помощью ЦВК и учитываются в формулах поправок (6) в реальном масштабе времени.

Полученные в каждом цикле ЦВК значения поправок, используются для компенсации погрешностей ИНС.

Углы β, Ψ, K рассчитываются с учетом информации датчиков углов, расположенных по осям В, Р и Т карданова подвеса прибора.

В процессе движения ТС, значения проекций относительных скоростей (Vx, Vz) и их интегралов являются отфильтрованными параметрами, вычисляемыми непрерывно и позволяющими также непрерывно определять поправки угловых отклонений приборного трехгранника ПСК от опорного трехгранника ОСК.

Предлагаемый способ предусматривает следующие операции:

1. Начальную выставку СП в плоскость горизонта и ориентацию по странам света;

2. Управление СП сигналами, пропорциональными угловой скорости вращения Земли и интегрированной информации с акселерометров X, Z, с использованием внешней информации текущих значений географических координат широты ТС;

3. Настройка системы на начальном кратковременном участке управления СП во время стоянки, в ходе которой определяются константы погрешностей начальной угловой выставки ПСК в ОСК и погрешностей угловых скоростей δωY, δωZ, δωХ;

4. Выработка поправочных значений угловых отклонений, определяющих положение ПСК относительно ОСК, с учетом нестабильности погрешностей всех элементов схемы управления гироплатформы в реальном масштабе времени;

5. Компенсация погрешностей ИНС;

6. Определение угловой ориентации ТС, с учетом информации с датчиков углов карданова подвеса прибора.

Таким образом, предложен способ, применяемый для определения угловой ориентации (курса, крена, тангажа) наземного транспортного средства, включающий начальную выставку СП ТГС в плоскость горизонта и ориентацию по странам света, управление СП сигналами, пропорциональными угловой скорости вращения Земли и интегрированной информации с акселерометров. Во время стоянки на начальном участке управления СП проводится настройка системы, в ходе которой определяются константы погрешностей начальной угловой выставки приборной системы координат в опорной системе координат и погрешности угловых скоростей. В процессе управления СП в каждом цикле ЦВК, с использованием внешней информации текущих значений географических координат транспортного средства, проводится расчет поправочных значений угловых отклонений приборной системы координат от опорной системы координат с учетом нестабильности погрешностей всех элементов схемы управления СП в реальном масштабе времени. Полученные в каждом цикле ЦВК значения поправок используются для компенсации погрешностей инерциальной навигационной системы и точного определения угловой ориентации транспортного средства по тангажу, рысканию и курсу с учетом информации с датчиков углов.

Техническим результатом применения предлагаемого способа является уменьшение погрешности определения угловой ориентации (курса, крена, тангажа) наземного ТС в процессе движения, в виду учета нестабильности погрешностей чувствительных элементов и тракта управления гироплатформой в реальном масштабе времени, которые согласно особенности управления в режиме обратной связи по информации сигналов с акселерометров, приводятся к погрешностям углов по трем осям, а значит и к изменению величины проекции ускорения силы тяжести на измерительные оси акселерометров.

Список литературы:

1. Патент RU №2098765 «Способ выработки навигационных параметров и вертикали места» (30.09.1994);

2. Патент RU №2107897 «Способ инерциальной навигации» (10.04.1995);

3. О.С. Салычев, Волновое описание возмущений в задачах оценки ошибок инерциальных систем навигации, - Москва. Машиностроение, - 1992, - стр. 128-141;

4. Инерциальные навигационные системы морских объектов, Д.П. Лукьянов, А.В. Мочалов, А.А. Одинцов, И.Б. Вайсгант, - Ленинград. Судостроение, - 1989, 184 с.

Способ определения угловой ориентации наземного транспортного средства, включающий начальную выставку стабилизированной платформы (СП) трехосного гиростабилизатора в плоскость горизонта и ориентацию по странам света, управление СП сигналами, пропорциональными угловой скорости вращения Земли и интегрированной информации с акселерометров, компенсацию погрешностей инерциальной навигационной системы, отличающийся тем, что во время стоянки на начальном участке управления СП проводится настройка системы, в ходе которой определяются константы погрешностей начальной угловой выставки приборной системы координат в опорной системе координат и погрешности угловых скоростей, в процессе управления СП в каждом цикле цифровым вычислительным комплексом (ЦВК), с использованием внешней информации текущих значений географических координат транспортного средства, проводится расчет поправочных значений угловых отклонений приборной системы координат от опорной системы координат с учетом нестабильности погрешностей всех элементов схемы управления СП в реальном масштабе времени, полученные в каждом цикле ЦВК значения поправок используются для компенсации погрешностей инерциальной навигационной системы и точного определения угловой ориентации транспортного средства по тангажу, рысканию и курсу с учетом информации с датчиков углов.



 

Похожие патенты:

Предлагаемая система относится к области автоматизированного мониторинга окружающей среды в условиях Арктики, а именно состояния атмосферы и льда с одновременным определением координат собственного местонахождения навигационных комплексов и передачи полученной информации по радиоканалам, и может быть использована в качестве средства мониторинга окружающей среды в зоне движения льда для безопасной проводки судов по северному морскому пути и обеспечения безопасности объектов нефтегазопромысловой и гидротехнической инфраструктуры на шельфе и в прибрежной зоне в ледовитых морях и в условиях ледяного покрова, в том числе и дрейфующего.

Предложен способ, выполняемый сетевым узлом, для оповещения об аварии беспилотного летательного аппарата. Способ содержит этап, на котором принимают сообщение об аварии от беспилотного летательного аппарата, этап, на котором получают расчетную точку крушения для беспилотного летательного аппарата, и этап, на котором, на основе полученной расчетной точки крушения, посылают предупреждающие сигналы устройствам связи, расположенным внутри заданной области.

Изобретение относится к области беспроводной связи, а точнее, к устройству для формирования карт высокого разрешения (HD) и способам для формирования карт HD, беспроводным сетям связи и транспортным средствам, использующим карты HD.

Группа изобретения относится к зарядке аккумуляторов электрических тяговых систем транспортных средств. Транспортное средство содержит процессор.

Группа изобретений относится к зарядке аккумуляторов электрических тяговых систем транспортных средств. Транспортное средство содержит процессор.

Изобретение относится к навигационным гироскопическим приборам и может быть применено в системах инерциальной навигации. Бесплатформенная инерциально-спутниковая система содержит корпус, крышки, три гироскопа, три акселерометра и блок электроники.

Представлены способы и системы для предоставления информации водителю автомобиля, позволяющей водителю принимать обоснованное решение, касающееся выбора более высокооктанового или более низкооктанового топлива для эксплуатации автомобиля.

Изобретение относится к области навигации, навигационных приборов, испытаниям и калибровке, и может быть использовано для калибровки датчиков бесплатформенных инерциальных систем ориентации и навигации летательных аппаратов, морских, наземных и других подвижных объектов.

Настоящее изобретение относится к способу обозначения местоположений вдоль дорог на карте, в частности к способу, который описывает местоположение объекта, используя поперечные и продольные расстояния вдоль центральной линии дороги на карте, на основе спутниковой системы позиционирования и вводит описание местоположения в навигационную систему для управления.

Изобретение относится к способу управления движением. Способ управления движением для транспортного средства содержит этапы, на которых, во время управления автономным движением транспортного средства, секция дороги, включающая в себя дугу и узкую дорогу, присутствует впереди рассматриваемого транспортного средства и другое транспортное средство движется в смежной полосе движения и впереди рассматриваемого транспортного средства, оценивают позицию, на основе скорости движения рассматриваемого транспортного средства, скорости движения другого транспортного средства и расстояния между транспортными средствами.
Наверх