Способ оценки и обеспечения параметрических запасов работоспособности электронных устройств

Изобретение относится к контролю электронных устройств. В способе оценки и обеспечения параметрических запасов работоспособности электронных устройств воздействуют на электронное устройство, воспроизводят отклонения этих воздействий и фиксируют отклики выходных параметров. Используя результаты эксперимента, оценивают возможные отклонения выходных параметров в условиях каждого опыта. Рассчитывают в каждом опыте запас работоспособности как разность между возможными минимальными и максимальными отклонениями параметров и допустимыми отклонениями. Затем заменяют элементы электронных устройств и изменяют их размещение в пределах конструкции. Изменяют электрические режимы элементов, а затем отдают предпочтение варианту реализации электронных устройств, обладающему необходимыми запасами работоспособности. Повышается надежность работы устройств. 4 ил.

 

Способ оценки и обеспечения параметрических запасов работоспособности электронных устройств (ЭУ) относится к способам контроля параметров ЭУ и актуален для контроля параметров ЭУ (ПЭУ), используемых в аппаратах и системах с длительным сроком эксплуатации.

Пусть имеется ЭУ, обеспечивающее преобразование входных сигналов хвх в параметр ПЭУ. Известны также ограничения на ПЭУ по минимально и максимально допустимым отклонениям в эксплуатационных условиях (Пminдоп, Пmaxдоп). Тогда для каждой реализации ЭУ разности и - запас работоспособности ЭУ по отношению к нижнему и верхнему ограничениям соответственно.

Наличие параметрических запасов работоспособности - обязательное условие для обеспечения надежного функционирования ЭУ, так как при изменении входных сигналов хвх в установленных пределах, а также других воздействий (факторов), влияющих на функционирование ЭУ (температура, питающие и др. напряжения), происходит изменение ПЭУ. При наличии запаса работоспособности ΔП такие изменения не сказываются на работе систем (приборов и др. устройств), использующих ЭУ.

Известны способы оценки и обеспечения запасов работоспособности, которые для оценки запасов работоспособности предлагают использовать метод рабочих областей (см. Маслов А.Я., Татарский В.Ю. «Повышение надежности радиоэлектронной аппаратуры». - М., «Советское радио», 1972), а для обеспечения длительной безотказной работы ЭУ конструктивными (введение регулировок) и другими методами устанавливать при изготовлении ЭУ уровни ПЭУ на равном удалении от нижнего и верхнего ограничений, т.е. Однако такая слишком общая рекомендация не учитывает случайного характера сочетаний указанных ранее факторов, а также того обстоятельства, что в составе системы такие сочетания возникают при эксплуатации с разными вероятностями, что практически невозможно с необходимой полнотой воспроизвести методом рабочих областей.

Известен также способ математического планирования эксперимента (МПЭ), основанный на воспроизведении в процессе исследований предусмотренных в матрице планирования (МП) возможных отклонений воздействий (см. Барабащук В.И., Креденцер Б.П., Мирошниченко В.И. «Планирование эксперимента в технике». - Киев: «Техника», 1984). Способ позволяет, воспроизводя возможные отклонения воздействий, которым подвержено ЭУ в эксплуатационных условиях, фиксировать отклики выходных параметров ЭУ на указанные отклонения. Однако способ не предполагает оценку запасов работоспособности.

Для заявленного способа выявлены общие с прототипом существенные признаки: экспериментальное воздействие на ЭУ совокупности факторов, которым оно подвержено в эксплуатационных условиях, воспроизведение в N опытах над ЭУ возможных отклонений этих воздействий, предусмотренных в МП для эксперимента, и фиксирование откликов выходных параметров ЭУ.

Технической проблемой предлагаемого способа является повышение надежности работы ЭУ.

Решение поставленных задач достигается способом оценки и обеспечения параметрических запасов работоспособности ЭУ, заключающимся в проведении эксперимента, при котором на электронное устройство (ЭУ) воздействуют совокупностью факторов, которым оно подвержено в эксплуатационных условиях. В соответствии с методологией МПЭ воспроизводят в N опытах над ЭУ возможные отклонения этих воздействий, предусмотренные в МП для эксперимента, и фиксируют отклики выходных параметров ЭУ. Согласно заявленному изобретению N опытам по фиксированию откликов выходных параметров подвергают выборку k электронных устройств и, используя результаты эксперимента с выборкой, оценивают возможные отклонения выходных параметров ЭУ в условиях каждого опыта. Рассчитывают в каждом опыте запас работоспособности как разность между возможными минимальными и максимальными отклонениями параметров ЭУ и допустимыми отклонениями. Полученные результаты используют как количественные параметрические показатели запаса работоспособности, а также для обеспечения необходимых запасов работоспособности ЭУ. Исходя из длительности функционирования ЭУ и возможного изменения их параметров вследствие деградационных процессов, производят замену элементов ЭУ (например, транзисторы, интегральные микросхемы и др.) и изменяют их размещение в пределах конструкции, изменяют электрические режимы элементов, а затем отдают предпочтение варианту реализации ЭУ, обладающему необходимыми запасами работоспособности.

Предлагается способ оценки и обеспечения параметрических запасов работоспособности ЭУ, заключающийся в экспериментальном воздействии на выборку k ЭУ совокупности факторов, которым они подвержены в эксплуатационных условиях; в проведении, в соответствии с методологией МПЭ, N опытов над каждым ЭУ по фиксированию откликов их выходных параметров при воспроизведении возможных отклонений этих воздействий, предусмотренных в МП для эксперимента; в определении значений параметров ЭУ в каждом опыте и оценки параметрических запасов работоспособности относительно заданных ограничений на ПЭУ по минимально и максимально допустимым отклонениям как разности между величиной ограничений и полученными значениями параметров соответственно.

Порядок реализации способа.

Пусть ЭУ (фиг. 1) претерпевает воздействие входных (хвх), внешних (хвнш) и внутренних (хвнт) факторов, где

- хвх - входные сигналы, подлежащие функциональному преобразованию, пройдя через ЭУ;

- хвнш - условия внешней среды (эксплуатационные условия) - температура, влажность, давление и др., в которых функционирует ЭУ;

- хвнт - разброс параметров комплектующих, взаимовлияние элементов внутри ЭУ и др. различные от образца к образцу ЭУ факторы, влияющие на выходные параметры (отклики) ЭУ.

При экспериментальной отработке ЭУ последние подвержены испытаниям, которые это допускают, например, на двух уровнях xmin (-) и xmax (+) в соответствии с МП для МПЭ с одним образцом ЭУ - фиг. 2.

В МП, например, х1 - входное воздействие, х2 - питающее напряжение, х3 - температура окружающей среды. Каждому набору воздействий, опыту (строки МП) соответствует уровень ПЭУ.

Удобно результаты МПЭ для одного образца ЭУ согласно МП представить в виде графика (факторограммы) - фиг. 3, где по оси абсцисс - номера опытов (1, 2, 3, 4, …, 8), по оси ординат - результаты измерения ПЭУ (точки П1, П2, П3, П4, …, П8 условно соединены для наглядности) и заданные ограничения на ПЭУ по минимально и максимально допустимым отклонениям (Пminдоп, Пmaxдоп).

Так как влияние хвнт не может быть достигнуто варьированием, его моделируют, подвергая испытаниям некоторое количество образцов ЭУ. При этом результаты МПЭ для этих образцов ЭУ согласно МП образуют коридор откликов - фиг. 4, где k - количество образцов, подвергнутых МПЭ.

Так как k всегда ограничено и не может отражать свойства генеральной совокупности (малая выборка), используют методы математической статистики, чтобы оценить возможные разбросы отклонений ПЭУ, например, толерантные пределы ( и - нижний и верхний пределы соответственно).

Пtср±ktS(N), где

- Пt - толерантные пределы ПЭУ в каждом опыте ( и - нижний и верхний соответственно);

- Пср - среднее значение ПЭУ по результатам МПЭ;

- kt - табулированный толерантный коэффициент;

- S(N) - оценка среднеквадратичных отклонений ПЭУ в каждом опыте.

Тогда, располагая полученными данными и ограничениями на по минимально и максимально допустимым отклонениям (Пminдоп, Пmaxдоп), можно оценить запас работоспособности относительно указанных ограничений как и в пределах каждого опыта (фиг. 4). С учетом разбросов отклонений ПЭУ в пределах каждого опыта указанные величины ( и ) получают разбросы от ΔПmin до ΔПmax.

Располагая полученными оценками запасов работоспособности для каждого варианта реализации ЭУ разработчик, исходя из длительности функционирования ЭУ и возможного изменения их параметров вследствие деградационных процессов, может стабилизировать некоторые воздействия для получения нужных уровней запасов работоспособности, производить замену элементов ЭУ и изменять их размещение в пределах конструкции (для минимизации взаимовлияния), изменять электрические режимы элементов, а затем выбирать оптимальную реализацию для достижения необходимых запасов работоспособности в опытах, имеющих большую вероятность при эксплуатации.

Таким образом, техническим результатом заявленного способа является определение значений параметров ЭУ в каждом опыте и получение оценок параметрических запасов работоспособности в эксплуатационных условиях при массовом производстве, а также использование результатов этих оценок для выбора оптимального варианта реализации ЭУ, внесения изменений в реализацию ЭУ, позволяющих обеспечить необходимые запасы работоспособности.

Данная совокупность признаков, предложенная авторами, не была обнаружена при проведении поиска аналогов для решения поставленных задач и не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии способа критериям "новизна" и "изобретательский уровень".

Рассмотренный способ можно использовать в аппаратах и системах с длительным сроком эксплуатации, где требуется массовое производство ЭУ.

Способ оценки и обеспечения параметрических запасов работоспособности электронных устройств, заключающийся в том, что проводят эксперимент, при котором на электронное устройство (ЭУ) воздействуют совокупностью факторов, которым оно подвержено в эксплуатационных условиях, воспроизводят в N опытах над ЭУ возможные отклонения этих воздействий, предусмотренные для эксперимента, и фиксируют отклики выходных параметров ЭУ, отличающийся тем, что N опытам по фиксированию откликов выходных параметров подвергают выборку k электронных устройств и, используя результаты эксперимента с выборкой, оценивают возможные отклонения выходных параметров ЭУ в условиях каждого опыта, рассчитывают в каждом опыте запас работоспособности как разность между возможными минимальными и максимальными отклонениями параметров ЭУ и допустимыми отклонениями и полученные результаты используют как количественные параметрические показатели запаса работоспособности, а также, исходя из длительности функционирования электронных устройств и возможного изменения их параметров вследствие деградационных процессов, производят замену элементов электронных устройств и изменяют их размещение в пределах конструкции, изменяют электрические режимы элементов, а затем отдают предпочтение варианту реализации электронных устройств, обладающему необходимыми запасами работоспособности.



 

Похожие патенты:

Изобретение относится к удаленному мониторингу. Система удаленного мониторинга газотурбинной установки содержит датчики, передающие информацию об эксплуатационных параметрах установки на сервер нижнего уровня, который хранит и передает информацию на сервер верхнего уровня.

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение обучения модели прогнозирования значений признаков кибер-физической системы (КФС) и вычисления порога ошибки для определения аномалии в КФС.

Изобретение относится к диагностике систем автоматического управления. В способе поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала и анализа знаков передач определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для контрольных точек от номинальных значений, вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы, определяют знаки отклонений интегральных оценок выходных сигналов модели.

Описывается создание базы знаний экспертной системы и использование такой системы для установления диагноза и/или выдачи прогноза аномалии в состоянии вибрационной машины или других вибрационных машин, рекомендации по мероприятиям технического обслуживания или информацию о времени выхода из строя вибрационной машины или других вибрационных машин.

Описывается создание базы знаний экспертной системы и использование такой системы для установления диагноза и/или выдачи прогноза аномалии в состоянии вибрационной машины или других вибрационных машин, рекомендации по мероприятиям технического обслуживания или информацию о времени выхода из строя вибрационной машины или других вибрационных машин.

Изобретение относится к фильтровентиляционным системам. В способе определения оптимального срока службы фильтра между заменами фильтра в фильтровентиляционной системе, получают параметр затрат, связанных с предметной частью фильтра и параметр затрат, связанных с эксплуатацией фильтра.

Изобретение относится к фильтровентиляционным системам. В способе определения оптимального срока службы фильтра между заменами фильтра в фильтровентиляционной системе, получают параметр затрат, связанных с предметной частью фильтра и параметр затрат, связанных с эксплуатацией фильтра.

Изобретение относится к диагностике систем автоматического управления. В способе поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности определяют знаки интегральных оценок выходных сигналов модели, полученные в результате структурной функции чувствительности каждого из соответствующих блоков.

Изобретение относится к области эксплуатации технических средств. Технический результат - повышение отказоустойчивости технических средств, предупреждение выходов из строя их элементов, исключение потери информации из-за неисправности источника вторичного электропитания, сокращение простоев в работе.

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении операторской системы распознавания и отображения доступов оператора к объектам процесса.

Предложенная группа изобретений относится к средствам для прогнозирования ожидаемого срока (24) службы комплектующих деталей наблюдаемого транспортного средства. Способ прогнозирования ожидаемого срока (24) службы комплектующей детали характеризуется тем, что данные (8) о состоянии комплектующих деталей выбранных транспортных средств передают в блок обработки.
Наверх