Способ получения нанокапсул тимола

Настоящее изобретение относится к области нанотехнологии и пищевой промышленности, а именно к способу получения нанокапсул тимола в каппа-каррагинане. Способ характеризуется тем, что в качестве ядра используют тимол, в качестве оболочки нанокапсул используют каппа-каррагинан, при этом порошок тимола медленно добавляют в суспензию каппа-каррагинана в гексане, в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 800 об/мин, после приливают фторбензол, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, или 1:3, или 1:2. Предлагаемый способ позволяет получить нанокапсулы тимола с использованием упрощенной технологии. 3 пр.

 

Изобретение относится к области нанотехнологии и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нвнокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул тимола, отличающийся тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а в качестве ядра - тимол при получении нанокапсул методом осаждения нерастворителем с применением фторбензола в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием фторбензола в качестве осадителя, а также использование каппа-каррагинана в качестве оболочки частиц и тимола - в качестве ядра.

ПРИМЕР 1. Получение нанокапсул тимола в соотношении ядро : оболочка 1:1

1 г тимола медленно добавляют в суспензию 1 г каппа-каррагинана в гексане в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 6 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул тимола в соотношении ядро : оболочка 1:3

1 г тимола медленно добавляют в суспензию 3 г каппа-каррагинана в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 6 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул тимола в соотношении ядро : оболочка 1:2

1 г тимола медленно добавляют в суспензию 2 г каппа-каррагинана в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 6 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка нанокапсул. Выход составил 100%.

Способ получения нанокапсул тимола в каппа-каррагинане, характеризующийся тем, что в качестве ядра используют тимол, в качестве оболочки нанокапсул используют каппа-каррагинан, при этом порошок тимола медленно добавляют в суспензию каппа-каррагинана в гексане, в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 800 об/мин, после приливают фторбензол, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, или 1:3, или 1:2.



 

Похожие патенты:

Изобретение относится к химической промышленности, а именно к технологии получения наночастиц серебра с использованием в качестве восстановителя растительного экстракта.

Изобретение может быть использовано в машиностроении. Способ получения нанокристаллического кубического карбида вольфрама включает предварительное вакуумирование камеры, наполнение ее газообразным аргоном при нормальном атмосферном давлении и комнатной температуре.
Изобретение относится к области медицины, фармацевтики и ветеринарии и может быть использовано для получения нанокапсул доксициклина. Способ получения нанокапсул доксициклина заключается в том, что порошок доксициклина добавляют в суспензию натрий карбоксиметилцеллюлозы в циклогексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее по каплям приливают хладон-112, полученную суспензию нанокапсул отфильтровывают и сушат.

Изобретение относится к нанотехнологии и мембранной технологии. Композиционная мембрана включает нанопористую подложку и нанесённый на неё селективный слой толщиной 20-200 нм, содержащий нанолисты оксида графена, интеркалированного фуллеренолами С60(ОН)n или С70(ОН)n, где n=10-40, равномерно распределенными между нанолистами оксида графена.

Изобретение относится к технологии получения керамического материала с высокими прочностными характеристиками и может быть использовано для изготовления керамических бронеэлементов и износо- и химически стойких изделий.

Композиция и способ изобретения относятся к получению изделий из высокоплотной карбидокремниевой SiC/C/Si керамики для различных отраслей промышленности. Технический результат состоит в увеличении глубины силицирования углеродных заготовок, увеличении размеров изделий из силицированых графитов, повышении плотности силицированных графитов, увеличении содержания в них карбидокремниевой фазы.

Изобретение относится к аддитивной 3D-технологии для производства преимущественно объемных микроразмерных структур из наночастиц, которые применяются в электронике, фотонике, медицинской и других областях.

Твердотельный конденсатор с диэлектрическим слоем, выполненным из нанопорошка диэлектрика, относится к области твердотельной нано- и микроэлектроники, в частности, суперконденсаторам или ионисторам.

Изобретение относится к антифрикционным композитным материалам на основе термопластичных полимеров и может использоваться в медицинских или ветеринарных целях для изготовления деталей суставных имплантатов, а также к способу их изготовления.

Изобретение может быть использовано в медицине. Поликомпонентная наноразмерная система для диагностики и терапии новообразований состоит из ядра, сформированного из диоксида кремния, диоксида титана, диоксида циркония или их композитов, внутреннего слоя, содержащего оксид меди, диоксид марганца, двойной оксид железа или их композитов, внешнего слоя, содержащего металлические наночастицы серебра, золота или их биметаллические частицы, и биологически активные молекулы - биомаркеры.

Изобретение относится к области биотехнологии. Описана группа изобретений, включающая вакцинную композицию для индуцирования защитного иммунного ответа на вирус и способ предупреждения вирусной инфекции, предусматривающий введение вакцинной композиции, где вирус выбран из группы, состоящей из респираторно-синцитального вируса (RSV), вируса бешенства, вируса Эбола и вируса гриппа.
Наверх