Способ получения нанокапсул сульфата железа (ii) в геллановой камеди

Изобретение относится к области нанотехнологии, ветеринарной медицины и микробиологии и может быть использовано для получения нанокапсул сульфата железа (II). Способ получения нанокапсул сульфата железа (II) заключается в том, что сульфат железа (II) добавляют в суспензию геллановой камеди в изогептане, содержащую препарат Е472с в качестве поверхностно-активного вещества, при перемешивании 600 об/мин, далее приливают хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. При этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 3 пр.

 

Изобретение относится к области нанотехнологии и ветеринарной медицины и микробиологии.

Ранее были известны способы получения микрокапсул солей.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул сульфата железа (II), отличающийся тем, что в качестве оболочки нанокапсул используется геллановая камедь при получении нанокапсул методом осаждения нерастворителем с применением хлороформа в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием хлороформа в качестве осадителя, а также использование геллановой камеди в качестве оболочки нанокапсул.

Результатом предлагаемого метода являются получение нанокапсул сульфата железа (II) в геллановой камеди.

ПРИМЕР 1 Получение нанокапсул сульфата железа (II), соотношение ядро : оболочка 1:3

1 г порошка сульфата железа медленно добавляют в суспензию 3 г геллановой камеди в изогептане, содержащую 0,01 г Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 600 об/мин. Далее приливают 5 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул сульфата железа (II), соотношение ядро : оболочка 1:1

1 г порошка сульфата железа медленно добавляют в суспензию 1 г геллановой камеди в изогептане, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 600 об/мин. Далее приливают 5 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул сульфата железа (II), соотношение ядро : оболочка 1:2

1 г порошка сульфата железа медленно добавляют в суспензию 2 г геллановой камеди в изогептане, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 600 об/мин. Далее приливают 5 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка нанокапсул. Выход составил 100%.

Получены нанокапсулы сульфата железа (II) с высокими выходами. Предложенная методика вполне пригодна для применения в промышленных масштабах ввиду минимальных потерь и простоты исполнения.

Способ получения нанокапсул сульфата железа (II) в геллановой камеди, характеризующийся тем, что в качестве оболочки нанокапсул используется геллановая камедь, а в качестве ядра - сульфат железа (II) при массовом соотношении ядро : оболочка 1:1, 1:2 или 1:3, при этом сульфат железа (II) добавляют в суспензию геллановой камеди в изогептане, содержащую препарат Е472с в качестве поверхностно-активного вещества, при перемешивании 600 об/мин, далее приливают хлороформ, полученную суспензию отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в конструкциях симметричных кабелей связи для сетей связи общего пользования и структурированных кабельных систем.

Изобретение относится к химической промышленности и строительству и может быть использовано при модифицировании пластичных смазок, эпоксидных смол и бетонов. В ёмкости для исходной суспензии 1 готовят смесь, содержащую жидкость и 10-20 мас.% кристаллического графита.

Использование: для исследования нанотонких пространственных диссипативных структур. Сущность изобретения заключается в том, что способ включает формирование нанотонких ПДС в нанотонких аморфных пленках при их одностороннем нагреве, исследование нанотонких ПДС электронно-микроскопическим и микродифракционным методами с получением их электронно-микроскопических изображений и микроэлектронограмм, определение с помощью метода светлого и темного поля индексов плоскостей, обуславливающих появление соответствующих изгибных контуров на электронно-микроскопических изображениях нанотонких ПДС, и определение с помощью метода изгибных контуров параметров изгиба и ориентировки нанотонких ПДС, а также углов поворота решетки нанотонких ПДС и направлений ротационного искривления решетки, построение двумерного геометрического объекта - поверхности искривления решетки нанотонких ПДС для выбранного кристаллографического направления, отличается тем, что построенную поверхность искривления решетки нанотонкой ПДС принимают за нейтральную поверхность нанотонкой ПДС путем сравнительного анализа нейтральной поверхности нанотонкой ПДС и нейтральных поверхностей тонких пластинок, соответствующей геометрической формы, служащих в качестве эталонов, выявляют области максимального напряжения, возникающие в нанотонкой ПДС, и используют эту информацию об особенностях изгиба нейтральной поверхности нанотонкой ПДС для исследования и предсказания физических свойств и физических процессов в нанотонких пространственных диссипативных структурах, в том числе о формировании и развитии межблочных границ в нанотонких ПДС.

Изобретение может быть использовано в биотехнологии и медицине для изготовления препаратов, подавляющих жизнедеятельность патогенных микроорганизмов. Для получения наноматериала с антимикробными свойствами на основе оксида графена и наночастиц оксида серебра и оксида меди (II) в водную суспензию оксида графена поочередно вводят наночастицы оксида серебра и оксида меди (II) при следующем соотношении компонентов, мас.%: оксид графена 2-6, наночастицы оксида серебра 4-8, наночастицы оксида меди (II) 8-16, вода дистиллированная – остальное.

Изобретение может быть использовано при обработке почв, пористых структур и сточных вод с целью подавления активности патогенных микроорганизмов. Способ получения коллоидных растворов трисульфида циркония в деионизированной воде включает синтез трисульфида циркония из металлического циркония и порошка элементарной серы, запаянных в кварцевые ампулы.
Изобретение относится к нанотехнологии и может быть использовано для 2D-печати проводящих дорожек, RFID-антенн, тонкопленочных суперконденсаторов, а также для окрашивания различных тканей и бумаги.

Изобретение относится к технологии получения перовскитных структур для тонкопленочных оптоэлектронных устройств в технологических процессах производства светодиодов, солнечных элементов и фотодетекторов со спектральным диапазоном от 400 до 780 нм, запрещенной зоной от 3,1 до 1,57 эВ.
Изобретение относится в области нанотехнологии, медицины, фармакологии, косметической и пищевой промышленности, а именно к способу получения нанокапсул сухого экстракта эвкалипта.
Изобретение относится к пищевой промышленности, в частности к способу производства смоквы с функциональными свойствами. Предложенный способ предусматривает размягчение сильно пектиновых фруктов в пароконвектомате при температуре 75°С, которые затем очищают от твердых составляющих, измельчают до состояния пюре и протирают через сито для получения однородной консистенции.
Изобретение относится к пищевой промышленности, в частности к способу производства кондитерских изделий с функциональными свойствами. Способ получения смоквы с функциональными свойствами предусматривает получение пюре путем размягчения сильно пектиновых фруктов в пароконвектомате при температуре 75°С, очистку их от твердых составляющих, измельчение до состояния пюре, которое затем протирают через сито для получения однородной консистенции.
Изобретение относится в области нанотехнологии, медицины, фармакологии, косметической и пищевой промышленности, а именно к способу получения нанокапсул сухого экстракта эвкалипта.
Наверх