Способ получения сферического алюмооксидного носителя

Изобретение относится к способу получения сферического алюмооксидного носителя, включающему приготовление смеси порошков гидроксида алюминия, суспендирование, пептизацию раствором азотной кислоты, формование сферических гранул, просушивание и прокаливание, при этом готовят смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% высокопористого бемита, имеющего объем пор 0,9-1,1 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, или смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% высокопористого бемита, имеющего объем пор 0,9-1,1 см3/г, и среднепористого бемита, имеющего объем пор 0,7 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, или смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% смеси высокопористых бемитов, имеющих объем пор 0,9-1,1 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, суспендируют водой, пептизируют с получением псевдозоля, перемешивают его, добавляют воду и вносят метилцеллюлозу в количестве 10-20 мас.% в расчете на прокаленный оксид алюминия, перемешивают до однородного состояния, а формование сферических гранул проводят методом углеводородно-аммиачного формования, перед просушиванием гранулы выдерживают на воздухе в течение 22-26 ч. Технический результат заключается в повышении содержания высокопористых компонентов в алюмооксидном носителе и прочности гранул носителя. 1 з.п. ф-лы, 4 пр.

 

Предлагаемое изобретение относится к способу получения сферического алюмооксидного носителя методом углеводородно-аммиачного формования. Сферический оксид алюминия находит широкое применение в химической и нефтеперерабатывающей промышленности в качестве адсорбента, осушителя, носителя и катализатора для различных процессов, в том числе процессов риформинга, Клауса и Сульфрен. При использовании сферического оксида алюминия в качестве носителя он должен обладать не только развитой пористой структурой и большой удельной поверхностью, но и высокой механической прочностью.

Известны различные способы получения сферических гранул оксида алюминия.

Описан следующий способ получения сферического оксида алюминия Раствор алюмината натрия обрабатывают азотной кислотой при 33-38°С в течение 3,0-3,5 с при рН 8,5-8,9. Полученный гидроксид алюминия подвергают стабилизации при рН 8,5-8,9, а затем формованию в углеводородно-аммиачном растворе и прокаливанию. Недостатком данного способа является высокая насыпная плотность полученных гранул (0,72 г/см3) и маленький объем пор (0,25 см3/г). RU 1594874 С, опубл. 30.10.1994.

Известен способ получения оксида алюминия, включающий пептизацию гидроксида алюминия с влажностью не более 83 мас.% (гидроксид алюминия осаждают непрерывным однопоточным способом при 35°С и рН 8,6.), формование сферических гранул углеводородно-аммиачным способом, сушку и прокаливание, отличающийся тем, что, с целью повышения водостойкости гранул и сокращения расхода кислоты, пептизацию проводят до величины кислотного модуля 0,06-0,09 моль кислоты на 1 моль оксида алюминия в присутствии добавки триэтиленгликоля в количестве 10-40% на Al2O3. RU 1653294 А1, опубл. 10.02.1996.

Недостатками получаемых таким способом гранул является их высокая насыпная плотность (0,72 г/см3).

Описан способ приготовления носителя на основе Sn(Zr)-γ-Al2O3 для катализатора риформинга бензиновых фракций, который готовят осаждением раствора азотнокислого алюминия водным раствором аммиака, с последующими стадиями фильтрации суспензии и промывки осадка, его пептизации кислотой с одновременным введением модифицирующей добавки Sn(Zr), жидкофазным формованием псевдозоля в виде гранул сферической формы путем его дозирования в слой керосина, используя в качестве отвердителя слой водного раствора аммиака с последующей промывкой сферических гранул водой, сушкой и термической обработкой, при этом получают сферический носитель диаметром 1,7±0,1 мм, характеризующийся мономодальным распределением пор по размерам с величиной удельной поверхности, равной 265-326 м2/г, объемом пор - 0,6-0,68 см3/г, средним диаметром пор 8,0-9,6 нм, насыпным весом - 0,53-0,59 г/см3 и механической прочностью на раздавливание 148-205 кг/см2. RU 2560161 С1, опубл. 10.08.2015.

К недостаткам данного способа получения оксида алюминия можно отнести многостадийность процесса и сложность регулирования пористой структуры получаемого оксида алюминия.

Наиболее близким к предлагаемому техническому решению и взятым в качестве ближайшего аналога является способ получения частиц сферического оксида алюминия, включающий стадии приготовления суспензии бемита с другим предшественником оксида алюминия (не более 3 мас.% от общей массы Al2O3 в суспензии), пептизации азотной кислотой, добавления порообразующего агента и поверхностно-активного вещества, перемешивания, жидкостного формования, сушки и прокаливания полученных гранул. При этом второй предшественник оксида алюминия выбирают из группы глиноземов (гидраргиллит, байерит и т.д.). В качестве порообразующего агента используют минеральные смазки, масла и воски, жиры, углеводороды и масляные фракции в количестве 0,2-30 мас.% от общей массы воды. В качестве поверхностно-активных веществ, предпочтительно, используют неионногенные ПАВ, доля которых определяется как отношение массы ПАВ к массе порообразующего агента и находится в диапазоне от 1-25 мас.%. US 9669387 В2, опубл. 06.06.2017.

Недостатком данного способа получения сферического оксида алюминия является низкая прочность гранул носителя (25-30 Н ≈ 2,5-3 кг на гранулу).

Техническая задача, решаемая заявленным изобретением, заключается в разработке способа получения сферического оксида алюминия, характеризующегося более развитыми пористой структурой и удельной поверхностью, низкой насыпной плотностью и высокой прочностью.

Технический результат от реализации заявленного изобретения заключается в повышении содержания высокопористых компонентов в алюмооксидном носителе и прочности гранул носителя.

Технический результат от реализации заявленного изобретения достигается тем, что в способе получения сферического алюмооксидного носителя, включающем приготовление смеси порошков гидроксида алюминия, суспендирование, пептизацию раствором азотной кислоты, формование сферических гранул, просушивание и прокаливание, согласно изобретению, готовят смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% высокопористого бемита, имеющего объем пор 0,9-1,1 см3/г и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г или смесь, содержащую 60-70 мас.% высокопористого бемита, имеющего объем пор 0,9-1,1 см3/г и среденепористого бемита, имеющего объем пор 0,7 см3/г и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, или смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% смеси высокопористых бемитов, имеющих объем пор 0,9-1,1 см3/г и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г. суспендируют водой, пептизируют с получением псевдозоля, перемешивают его, добавляют воду и вносят метилцеллюлозу в количестве 10-20 мас.% в расчете на прокаленный оксид алюминия, перемешивают до однородного состояния, формование сферических гранул проводят методом углеводородно-аммиачного формования, а перед просушиванием гранулы выдерживают на воздухе в течение 22-26 ч.

Достижению технического результата также способствует то, что в псевдозоль добавляют воду до содержания оксида алюминия 12-14 мас.%.

Полученный сферический алюмооксидный носитель обладает следующими свойствами:

объем пор - не менее 0,5 см3/г;

удельная поверхность - не менее 180 м2/г;

прочность - не менее 6 кг/гранулу;

насыпной вес - не более 0,7 г/см3.

Важно отметить, что использование метилцеллюлозы как органического связующего вещества, обеспечивает более высокое содержание широкопористых и среднепористых компонентов, в результате чего полученные сферические гранулы алюмооксидного носителя обладают развитой удельной поверхностью и пористой структурой.

Конкретная реализация способа раскрыта в следующих примерах.

Пример 1.

Пример иллюстрирует получение сферического алюмооксидного носителя, в котором используют смесь высокопористого бемита, имеющего объем пор 1,0 см3/г и малопористого псевдобемита, содержащую, мас.%: высокопористый бемит - 60, малопористый псевдобемит - 40.

Смесь 15,6 г высокопористого бемита (объем пор 1,0 см3/г) и 11,1 г малопористого псевдобемита помещают в стеклянный стакан, тщательно перемешивают и суспендируют 50 мл дистиллированной воды. Затем приливают 2 мас.%-ный раствор азотной кислоты, содержащий 0,3 мл 65 мас.%-ной азотной кислоты и 13,1 мл дистиллированной воды. Полученный псевдозоль, имеющий рН=3,8, тщательно перемешивают до получения однородной массы, добавляют 66,9 мл воды, после чего вносят 3 г раствора 1,64 мас.%-ной метилцеллюлозы, перемешивают в течение 5 мин до однородного состояния и формуют сферические гранулы методом углеводородно-аммиачного формования. В соответствии с методикой формования полученный раствор через фильеру диаметром 0,6 мм подают в углеводородный слой, имеющий плотность 0,792 г/см3, где капли приобретают сферическую форму под действием сил поверхностного натяжения. Далее «сферический золь» взаимодействует с раствором аммиака в воде, имеющим концентрацию 15 мас.%, и в результате происходит отвердевание сферических гранул.

Полученные сферические гранулы выдерживают на воздухе в течение 24 ч и помещают в муфельную печь. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Далее температуру повышают со скоростью 2°С/мин до температуры 600°С. При температуре 600°С выдерживают в течение 7 ч.

В результате получают сферический алюмооксидный носитель, имеющий насыпной вес 0,66 г/см3, удельную поверхность 185 м2/г, объем пор 0,58 см3/г и механическую прочность 7 кг/гранулу.

Пример 2.

Пример демонстрирует получение сферического алюмооксидного носителя, в котором используют смесь высокопористого бемита, имеющего объем пор 0,9 см3/г, среднепористого бемита и малопористого псевдобемита, содержащую, мас.%: высокопористый бемит - 30, среднепористый бемит - 40, малопористый псевдобемит - 30.

Смесь 8,0 г высокопористого (объем пор 0,9 см3/г), 10,2 г среднепористого бемита и 8,3 г малопористого псевдобемита помещают в стеклянный стакан, тщательно перемешивают и суспендируют 50 мл дистиллированной воды. Затем приливают 2 мас.%-ный раствор азотной кислоты, содержащий 0,45 мл 65 мас.%-ной азотной кислоты и 19,7 мл дистиллированной воды. Полученный псевдозоль, имеющий рН=3,9, тщательно перемешивают до получения однородной массы, добавляют 70,3 мл воды, после чего вносят 3 г раствора 1,64 мас.%-ной метилцеллюлозы, перемешивают в течение 5 мин до однородного состояния. Формуют сферические гранулы методом углеводородно-аммиачного формования через фильеру диаметром 0,6 мм в условиях примера 1. Полученные сферические гранулы выдерживают на воздухе в течение 24 ч и помещают в муфельную печь. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Далее температуру повышают со скоростью 2°С/мин до температуры 600°С. При температуре 600°С выдерживают в течение 7 ч.

В результате получают сферический алюмооксидный носитель, имеющий насыпной вес 0,70 г/см3, удельную поверхность 185 м2/г, объем пор 0,51 см3/г и механическую прочность 8 кг/гранулу.

Пример 3.

Пример показывает получение сферического алюмооксидного носителя, в котором используют смесь высокопористого бемита, имеющего объем пор 1,1 см3/г, высокопористого бемита, имеющего объем пор 0,9 см3/г и малопористого псевдобемита, содержащую, мас.%: высокопористый бемит (объем пор 1,1 см3/г) - 30, высокопористый бемит (объем пор 0,9 см3/г) - 30, малопористый псевдобемит - 40.

Смесь 8,0 г высокопористого бемита (объем пор 1,1 см3/г, 7,8 г высокопористого бемита (объем пор 0,9 см3/г) и 11,1 г малопористого псевдобемита помещают в стеклянный стакан, тщательно перемешивают и суспендируют 50 мл дистиллированной воды. Затем приливают 2 мас.%-ный раствор азотной кислоты, содержащий 0,4 мл 65 мас.%-ной азотной кислоты и 17,5 мл дистиллированной воды. Полученный псевдозоль, имеющий рН=3,7, тщательно перемешивают до получения однородной массы, добавляют 62,5 мл воды, после чего в него вносят 4 г раствора 1,64 мас.%-ной метилцеллюлозы, перемешивают в течение 5 мин до однородного состояния и формуют методом углеводородно-аммиачного формования через фильеру диаметром 0,6 мм в условиях примера 1. Полученные сферические гранулы выдерживают на воздухе в течение 26 ч и помещают в муфельную печь. Режим высушивания ступенчатый: 60°С -2 ч, 80°С - 2 ч, 110°С - 2 ч. Далее температуру повышают со скоростью 2°С/мин до температуры 600°С. При температуре 600°С выдерживают в течение 7 ч.

В результате получают сферический алюмооксидный носитель, имеющий насыпной вес 0,68 г/см3, удельную поверхность 180 м2/г, объем пор 0,57 см3/г и механическую прочность 7 кг/гранулу.

Пример 4.

Пример иллюстрирует получение сферического алюмооксидного носителя, в котором используют смесь высокопористого бемита, имеющего объем пор 0,9 см3/г и малопористого псевдобемита, содержащую, мас.%: высокопористый бемит - 60, малопористый псевдобемит - 40.

Смесь 16 г высокопористого бемита (объем пор 0,9 см3/г) и 11,1 г малопористого псевдобемита помещают в стеклянный стакан, тщательно перемешивают и суспендируют 50 мл дистиллированной воды. Затем приливают 2 мас.%-ный раствор азотной кислоты, содержащий 0,35 мл 65 мас.%-ной азотной кислоты и 15,3 мл дистиллированной воды. Полученный псевдозоль, имеющий рН=3,7, тщательно -перемешивают до получения однородной массы, добавляют 54,7 мл воды, после чего в него вносят 2 г раствора 1,64 мас.%-ной метилцеллюлозы, перемешивают в течение 5 мин до однородного состояния. Формуют сферические гранулы методом углеводородно-аммиачного формования через фильеру диаметром 0,6 мм в условиях примера 1. Полученные сферические гранулы выдерживают на воздухе в течение 22 ч и помещают в муфельную печь. Режим высушивания ступенчатый: 60°С - 2 ч, 80°С - 2 ч, 110°С - 2 ч. Далее температуру повышают со скоростью 2°С/мин до температуры 600°С. При температуре 600°С выдерживают в течение 7 ч.

В результате получают сферический алюмооксидный носитель, имеющий насыпной вес 0,69 г/см3, удельную поверхность 190 м2/г, объем пор 0,55 см3/г и механическую прочность 8 кг/гранулу.

Приведенные примеры показывают, что предложенное изобретение, касающееся способа получения сферического носителя, позволяет получить носители, характеризующиеся требуемыми значениями механической прочности, объема пор, большой удельной поверхностью и невысоким насыпным весом.

1. Способ получения сферического алюмооксидного носителя, включающий приготовление смеси порошков гидроксида алюминия, суспендирование, пептизацию раствором азотной кислоты, формование сферических гранул, просушивание и прокаливание, отличающийся тем, что готовят смесь, содержащую гидрооксид алюминия в виде 60-70 мас. % высокопористого бемита, имеющего объем пор 0,9-1,1 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, или смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% высокопористого бемита, имеющего объем пор 0,9-1,1 см3/г, и среднепористого бемита, имеющего объем пор 0,7 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, или смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% смеси высокопористых бемитов, имеющих объем пор 0,9-1,1 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, суспендируют водой, пептизируют с получением псевдозоля, перемешивают его, добавляют воду и вносят метилцеллюлозу в количестве 10-20 мас.% в расчете на прокаленный оксид алюминия, перемешивают до однородного состояния, а формование сферических гранул проводят методом углеводородно-аммиачного формования, перед просушиванием гранулы выдерживают на воздухе в течение 22-26 ч.

2. Способ по п. 1, отличающийся тем, что в псевдозоль добавляют воду до содержания оксида алюминия 12-14 мас.%.



 

Похожие патенты:

Изобретение относится к синтезу цеолитов. Описан способ получения гранулированного без связующего кристаллического цеолита ZSM-5, включающий смешение порошкообразного цеолита ZSM-5 с другим сырьевым компонентом, увлажнение полученной смеси, формование гранул, сушку, гидротермальную кристаллизацию при повышенной температуре, отмывку, сушку и последующую прокалку гранул, отличающийся тем, что в качестве другого сырьевого компонента в смесь для формования гранул вводят предварительно полученный аморфный алюмосиликат с мольным соотношением SiO2/Al2O3=30 в таком количестве, чтобы общее массовое содержание компонентов в смеси составляло: порошкообразный цеолит ZSM-5 50-65%, аморфный алюмосиликат 35-50%, увлажнение полученной смеси осуществляют путем добавления воды, прокалку сформованных гранул проводят при 550°С в атмосфере воздуха в течение 4 часов, гидротермальную кристаллизацию осуществляют из реакционных смесей следующего состава: (3,0-4,0)Na2O⋅(0,5-2,3)R⋅Al2O3⋅(60-80)SiO2⋅(450-900)Н2О, где R - органический темплат, представляющий собой тетрабутиламмоний бромид, н-бутанол, моноэтаноламин, гексаметилендиамин, при 115±5°С в течение 48-72 часов, полученные гранулы после двукратной промывки водой и сушки прокаливают при 550-600°С в течение 3-4 часов.

Изобретение относится к композиции катализатора для изомеризации алкилароматических соединений, которая содержит компонент, представляющий собой материал носителя, и компонент, представляющий собой металл(-ы), нанесенный на компонент, представляющий собой материал носителя, причем компонент, представляющий собой материал носителя, состоит из (i) цеолита типа ZSM-12 в количестве от 2 до 20% мас.
Изобретение относится к способу получения изопропилбензола в процессе алкилирования бензола пропиленом при температуре 170-230°C, давлении от атмосферного до 50 атм, мольном отношении бензол/пропилен в исходной смеси от 4:1 до 10:1, весовой скорости подачи исходной смеси от 0,2 до 10 ч-1 с использованием катализатора на основе цеолита Бета, приготовленного контактированием цеолита Бета с раствором нитрата аммония для удаления соединений натрия и переведения цеолита в водородную форму, с последующими стадиями грануляции со связующим, сушки и прокаливания гранул, причем цеолит Бета перед грануляцией со связующим предварительно подвергают обработке раствором хелатирующего агента, а затем обрабатывают перегретым водяным паром при температуре не выше 550°С в течение не менее 2 ч, в качестве хелатирующиего агента применяют сульфосалициловую кислоту, этилендиаминтетрауксусную кислоту ЭДТА, сульфобензойную кислоту, 3-гидроксинафталин-1,4-дисульфокислоту.

Изобретение относится к технологии получения композиций на основе оксида циркония и оксида церия с добавкой по меньшей мере одного редкоземельного элемента и может быть применено в системах нейтрализации выхлопных газов автомобильного транспорта.

Изобретение относится к области получения металлокомплексного катализатора на основе имино-амидного π-аллильного комплекса никеля, активного в полимеризации стирола, в промышленных масштабах.

Изобретение относится к катализатору и способу прямой конверсии синтез-газа для получения олефинов, у которых число атомов углерода меньше или равно 4. Указанный катализатор представляет собой смешанный катализатор A+B, где компонент A катализатора и компонент B катализатора объединены путем механического перемешивания; активная составляющая компонента A катализатора представляет собой оксид активного металла; катализатор B представляет собой загружаемое молекулярное сито, при этом носитель представляет собой один, два или более из Al2O3, SiO2, TiO2, ZrO2, CeO2, MgO и Ga2O3 с многоуровневой системой пор; молекулярное сито имеет одну или две из структур CHA и AEI; загрузка молекулярного сита составляет от 4 до 45 вес.

Изобретение относится к составу катализатора, пригодному для каталитического восстановления соединений серы в газовом потоке. Состав катализатора содержит сформированный агломерат совместно перемешанной смеси, содержащий псевдобемит, соединение кобальта и соединение молибдена, причем указанный сформированный агломерат обжигают для получения указанного состава катализатора, содержащего гамма-оксид алюминия, от 7,75 до 15 мас.% молибдена и от 2,85 до 6 мас.% кобальта, где каждый мас.% рассчитан от общей массы указанного состава катализатора и металла в качестве оксида независимо от его фактической формы.

Настоящее изобретение относится к способу получения соединения, представленного формулой 1, , где значения заместителей такие, как определены в формуле изобретения.

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к катализатору глубокого каталитического крекинга нефтяных фракций для производства олефинов С2-С4 и высокооктанового бензина и к способу его получения.

Предложен катализатор для синтеза ароматических углеводородов, способ его получения и способ синтеза ароматических углеводородов непосредственно из синтез-газа путем применения указанного катализатора.

Изобретение относится к технологии получения композиций на основе оксида циркония и оксида церия с добавкой по меньшей мере одного редкоземельного элемента и может быть применено в системах нейтрализации выхлопных газов автомобильного транспорта.
Наверх