Композиционный биодеградируемый материал на основе целлюлозы и полиангеликалактона

Заявляемое изобретение относится к области биодеградируемых композиционных полимерных материалов на основе целлюлозы и полиэфиров и может быть использовано для производства биодеградируемых композитов, применяемых в медицине, для производства одноразовой посуды, упаковочных изделий, тары, а также в космических, авиационных и многих других отраслях промышленности. Композиционный биодеградируемый материал представляет собой полимерную композицию, содержащую в качестве армирующего материала целлюлозу, а в качестве связующих - полиангеликалактон и модифицированный газообразным хлористым водородом крахмал. Технический результат изобретения заключается в быстрой биодеградации композита при сохранении высоких прочностных показателей композиционного материала. 10 пр.

 

Заявляемое изобретение относится к области композиционных полимерных материалов на основе целлюлозы и полиэфиров, и может быть использовано для производства биодеградируемых композитов, применяемых в медицине, для производства упаковочных изделий, тары, а также в космических, авиационных и многих других отраслях промышленности. Более узкая область заявляемого изобретения - биодеградируемые композиционные полимерные материалы на основе полиангеликалактона и целлюлозы.

Альфа-ангеликалактон (5-метил-2(3Н)-фуранон) получают дегидратацией левулиновой (4-оксопентановой) кислоты. Известно, что полимеры альфа-ангеликалактона полиэфирной структуры способны к биодеградации [RU 2309163, 27.10.2007; RU 2482134, 20.05.2013].

На современном этапе развития технологий весьма интенсивно развивается область синтеза новых композиционных материалов, сочетающих высокие прочностные показатели и возможности биодеградации. Для многих областей применения, в том числе одноразовой посуды и упаковочных материалов, важна высокая скорость их биодеградации, позволяющая утилизировать такие отходы в метантенках.

Известны двухслойные материалы из пленок и волокон целлюлозы, полилактидов и полимеров других гидроксикарбоновых кислот [US 5434004, 18.07.1995], предназначенные для использования в качестве упаковочных материалов.

Основные недостатки известного продукта заключаются в его низких прочностных показателях.

Известен композит на основе полилактида и технической целлюлозы [Aji Р. Mathew, Kristiina Oksman, Mohini Sain. Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC). Journal of Applied Polymer Science, Vol. 97, 2014-2025 (2005)].

Основным недостатком известного продукта являются его низкие прочностные показатели (разрывное усилие - 45,2 МПа), что обусловлено низкой адгезией между волокном и матрицей композита и отсутствием ковалентного связывания между цепями целлюлозы и полилактида. Следует, однако, отметить, что по прочности на разрыв и модулю Юнга известный продукт превосходит аналогичные композиты из микрокристаллической целлюлозы [СА 2788633, 18.08.2011].

Известен композит, получаемый на основе полилактида и целлюлозы, полученной из бамбука [Tingju Lu, Shimeng Liu, Man Jiang, Xiaoling Xu, Yong Wang, Zeyong Wang, Jan Gou, David Hui, Zuowan Zhou. Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites. Composites: Part В 62 (2014) 191-197]. Для обеспечения ковалентного связывания между полимерными компонентами целлюлозу обрабатывали водным раствором NaOH, промывали водой и высушивали. Активированную целлюлозу и полилактид перемешивали и прессовали полученный композиционный материал. Известный продукт характеризовался модулем Юнга 2,6 ГПа и прочностью на разрыв 72 МПа.

Основной недостаток известного продукта заключается в его низких прочностных показателях. Известно, что полимеры сетчатой структуры могут иметь более высокие прочностные показатели по сравнению с линейными, цепными полимерами неразветвленной структуры. Отмеченный недостаток известного вещества обусловлен его существенным признаком: отсутствием в структуре его полимерной матрицы разветвлений и элементов сетчатой структуры.

Известен продукт, получаемый смешиванием и нагреванием целлюлозы, полилактида и малеинового ангидрида [US 6124384, 26.09.2000]. Малеиновый ангидрид в заявляемом продукте обеспечивает прививку, т.е. ковалентное связывание полимера матрицы с поверхностью целлюлозы, а также формирование сетчатой структуры полимерной матрицы и, следовательно, повышение прочностных показателей получаемого композита. Получаемый в соответствии с известным способом композит характеризуется прочностью на разрыв 58-64,5 МПа и модулем упругости на растяжение 3,45-4,1 ГПа.

Основные недостатки полимерного композиционного материала заключаются в его низких прочностных показателях и низкой способности к биодеградации, данные по которой в описании патента отсутствуют.

Известна биологически разрушаемая композиция на основе диацетата целлюлозы, крахмала и гидролизного лигнина [Ru 2174132, 27.09.2001].

Основной недостаток полимерного композиционного материала заключаются в его низких прочностных показателях (прочность на разрыв 32-40 МПа).

Наиболее близким к предлагаемому полимерному композиционному материалу является продукт, представляющий собой полимерную композицию, содержащую в качестве армирующего материала целлюлозу, а в качестве привитого полиэфирного связующего сетчатой структуры - полиангеликалактон при следующем соотношении компонентов, мас.%: полиангеликалактон - 20-70, целлюлоза-остальное [Ru 2687915, 16.05.2019].

Основной недостаток полимерного композиционного материала заключается в его медленной биодеградации: потеря веса образцов известного композиционного материала в компостной куче 77 - 100% достигалась в течение 20 недель.

Технический результат изобретения - создан новый композиционный биодеградируемый материал на основе целлюлозы и полиангеликалактона с улучшенными показателями скорости биодеградации.

Технический результат изобретения достигается тем, что композиционный биодеградируемый материал на основе целлюлозы и привитого сетчатого полиангеликалактона, согласно изобретению, представляет собой полимерную композицию, содержащую в качестве армирующего материала целлюлозу, а в качестве связующих - полиангеликалактон сетчатой структуры и модифицированный газообразным хлористым водородом крахмал при следующем соотношении компонентов, мас.%: полиангеликалактон - 20-60, модифицированный крахмал - 2-10, целлюлоза - остальное.

Нами неожиданно установлено, что крахмал, модифицированный газообразным хлористым водородом, резко ускоряет биодеградацию заявляемого композиционного материала при сохранении его высоких прочностных показателей. Добавки немодифицированного крахмала в количестве 2-10 мас.% не дают значительного прироста скорости биодеградации, а большие добавки крахмала приводят к снижению прочностных показателей композиционного материала. Высокая эффективность крахмала, модифицированного газообразным хлористым водородом, вероятно, обусловлена гидролитическим расщеплением глюкозидных связей, изменением его структуры и образованием нанодисперсных форм крахмала.

Сравнительный анализ заявляемого изобретения и прототипа показывает, что общими признаками являются:

- в качестве армирующего компонента композиционного материала используется целлюлоза;

- связующие полимерные компоненты привиты к (связаны с) поверхности целлюлозы ковалентными связями;

- в качестве связующего компонента используется полиангеликалактон сетчатой структуры.

Заявляемое изобретение характеризуется следующей совокупностью отличительных признаков:

- в качестве дополнительного связующего компонента используют крахмал, модифицированный газообразным хлористым водородом.

- соотношение компонентов в полимерной композиции, мас.%: крахмал, модифицированный газообразным хлористым водородом, - 2-10, полиангеликалактон - 20-70; целлюлоза - остальное.

Следствием применения крахмала, модифицированного газообразным хлористым водородом, специфики его структуры и молекулярного строения, и экспериментально установленного соотношения компонентов, т.е. отличительных признаков изобретения, является достижение технического результата - относительно быстрой биодеградации полимерной композиции. Это означает, что технический результат и отличительные признаки изобретения находятся в причинно-следственной связи между собой.

Изобретение подтверждается следующими примерами.

Пример 1. В колбу ротационного испарителя загружали 80 г картофельного крахмала пищевого качества. В барботер емкостью 200 мл загружали 100 мл концентрированной соляной кислоты и соединяли его с колбой испарителя. Поток воздуха, насыщенный хлористым водородом, поступал в роторный испаритель через барботер и отсасывался водоструйным насосом. Крахмал насыщался хлористым водородом во вращающейся колбе роторного испарителя в течение 60 мин, после чего барботер отсоединяли от испарителя и хлористый водород удаляли из крахмала откачкой в вакууме. Полученный порошок модифицированного крахмала использовали в описанных ниже экспериментах.

В колбу ротационного испарителя загружали 6,0 г порошка отбеленной целлюлозы, полученной из фильтровальной бумаги, и 0,5 г модифицированного крахмала. Затем во вращающуюся колбу заливали 20 мл 0,012 молярного водного раствора щелочи. Содержимое колбы перемешивали в течение 30 мин. вращением в ротационном испарителе и полностью испаряли воду. После этого в колбу добавляли 3,5 г альфа-ангеликалактона и 0,05 г дикумилпероксида в 20 мл тщательно осушенного тетрагидрофурана. Смесь перемешивали в испарителе 30 мин при комнатной температуре, тетрагидрофуран отгоняли, полученную смесь выгружали и выдерживали при 60°С в течение 2 часов. Получено 10,0 г привитого композиционного материала с соотношением целлюлоза : полиангеликалактон : крахмал, мас.% 60:35:5.

Полученный композит укладывали под пресс и прессовали под давлением 10 МПа при 130°С в течение 30 мин. Композит охлаждали, после чего определяли и рассчитывали его прочность на разрыв. Полученный композит имел прочность на разрыв 73 МПа.

Биодеградацию полученного композита размером 10×10×1 мм проводили в компостной куче в аэробных условиях в течение двух недель. Композит практически полностью разрушился, потеря веса составила 95%.

Пример 2. Аналогично примеру 1, отличие в том, что в колбу загружали 6,3 г целлюлозы и 0,2 г модифицированного крахмала.

Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон : крахмал 63:35:2. Композит имел прочность на разрыв 76 МПа.

Биодеградацию полученного композита проводили в тех же условиях. Композит в основном разрушился, потеря веса составила 88%.

Пример 3. Аналогично примеру 1, отличие в том, что в колбу загружали 5,5 г целлюлозы и 1,0 г модифицированного крахмала.

Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон : крахмал 55:35:10. Композит имел прочность на разрыв 70 МПа.

Биодеградацию полученного композита проводили в тех же условиях. Композит полностью разрушился, потеря веса составила 98%.

Пример 4. Аналогично примеру 1, отличие в том, что в колбу загружали 4,5 г целлюлозы и 2,0 г модифицированного крахмала.

Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон : крахмал 45 : 35 : 20. Композит имел прочность на разрыв 61 МПа.

Биодеградацию полученного композита проводили в тех же условиях. Композит полностью разрушился, потеря веса составила 98%.

Пример 5. Аналогично примеру 1, отличие в том, что в колбу загружали 0,5 г немодифицированного пищевого крахмала.

Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон : крахмал 60:35:5. Композит имел прочность на разрыв 58 МПа.

Биодеградацию полученного композита проводили в тех же условиях. Композит разрушился частично, потеря веса составила 64%.

Пример 6 (Прототип). Аналогично примеру 1, отличие в том, что в колбу загружали 6,5 г целлюлозы без добавок крахмала.

Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон 65:35. Композит имел прочность на разрыв 78 МПа.

Биодеградацию полученного композита проводили в тех же условиях в течение двух недель. Композит разрушился незначительно, потеря веса составила 31%.

Пример 7. Аналогично примеру 1, отличие в том, что в колбу загружали 7,5 г целлюлозы, 2,0 г ангеликалактона и 0,5 г модифицированного крахмала.

Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон : крахмал 75:20:5. Композит имел прочность на разрыв 65 МПа.

Биодеградацию полученного композита проводили в тех же условиях. Композит разрушился частично, потеря веса составила 68%.

Пример 8. Аналогично примеру 1, отличие в том, что в колбу загружали 3,5 г целлюлозы, 6,0 г ангеликалактона и 0,5 г модифицированного крахмала.

Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон : крахмал 35:60:5. Композит имел прочность на разрыв 62 МПа.

Биодеградацию полученного композита проводили в тех же условиях. Композит разрушился частично, потеря веса составила 76%.

Пример 9. Аналогично примеру 1, но вместо порошка отбеленной целлюлозы использовали товарную вискозную целлюлозную ткань.

После выгрузки пропитанную ткань укладывали на тефлоновую подложку, выравнивали и выдерживали при 60°С в течение 2 часов. Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон : крахмал 60:35:5. Композит, полученный горячим прессованием, имел прочность на разрыв 79 МПа.

Биодеградацию полученного композита размером 10×10×1 мм проводили в компостной куче в аэробных условиях в течение двух недель. Потеря веса композита составила 57%.

Пример 10. Аналогично примеру 1, но вместо порошка отбеленной целлюлозы использовали целлофановую пленку (пленка из вискозной целлюлозы) толщиной 0,05 мм.

После выгрузки пропитанную и набухшую целлофановую пленку укладывали в четыре слоя на тефлоновую подложку, выравнивали и выдерживали при 60°С в течение 2 часов. Получено 10,0 г привитого композиционного материала с массовым соотношением целлюлоза : полиангеликалактон : крахмал 60:35:5. Композит, полученный горячим прессованием, имел прочность на разрыв 72 МПа.

Биодеградацию полученного композита размером 10×10×0,2 мм проводили в компостной куче в аэробных условиях в течение двух недель. Потеря веса композита составила 83%.

Как видно из примеров, технический результат заявляемого изобретения проявляется в заявленном интервале соотношений компонентов, масс. %: модифицированный крахмал - 2-10; полиангеликалактон - 20-60; целлюлоза - остальное. За рамками заявленного интервала соотношений, показатели скорости биодеградации и прочности получаемых композитов резко снижаются, т.е. технический результат заявляемого изобретения теряется.

Таким образом, создан новый композиционный биодеградируемый материал на основе целлюлозы, полиангеликалактона и модифицированного крахмала с улучшенными показателями скорости биодеградации.

Композиционный биодеградируемый материал на основе целлюлозы и привитого полиангеликалактона сетчатой структуры, характеризующийся тем, что он представляет собой полимерную композицию, содержащую в качестве армирующего материала целлюлозу, а в качестве связующих - полиангеликалактон и модифицированный газообразным хлористым водородом крахмал при следующем соотношении компонентов, мас.%:

модифицированный газообразным хлористым
водородом крахмал 2-10
полиангеликалактон 20-60
целлюлоза остальное



 

Похожие патенты:

Изобретение относится к отверждаемым составам, применяемым в ламинирующих адгезивах. Предложен отверждаемый состав, подходящий для применения в ламинирующем адгезиве, содержащий a) смесь, состоящую из i) сложного полиэфира с концевой эпоксидной группой и по меньшей мере одного из ii) малеатного сложного (поли)эфира или iii) олигомера или полимера с концевым диакрилатом, и b) отверждающий агент на основе алифатического амина.

Настоящее изобретение относится к способу отверждения ненасыщенной полиэфирной смолы или виниловой эфирной смолы. Описан способ отверждения ненасыщенной полиэфирной смолы или виниловой эфирной смолы, содержащей реакционно-способный разбавитель, выбранный из группы, состоящей из акриловой кислоты, метакриловой кислоты, акрилатов, метакрилатов, акриламидов, метакриламидов и их комбинаций, причем указанный способ включает добавление к указанной смоле (I) кетонного пероксида, выбранного из группы, состоящей из пероксида метилизопропилкетона, пероксида метилизобутилкетона, пероксида циклогексанона, а также их комбинаций, и (II) соединения Cu.

Изобретение относится к полимерным композитным материалам, обладающим высокой огнестойкостью, которые могут применяться в качестве конструкционных материалов, либо средств защиты объектов различного технического назначения от разрушительного воздействия высоких температур в аварийных ситуациях, сопровождаемых пожаром, путем увеличения времени достижения защищаемым объектом максимальной критической температуры, при которой объект теряет эксплуатационные свойства.

Изобретение относится к самоочищающемуся композитному материалу, предназначенному для производства формованных деталей интерьера кухни и ванной комнаты. Самоочищающийся композитный материал по изобретению содержит от 50 до 85% масс.

Настоящее изобретение относится к способу отверждения термореактивных смол. Описан способ отверждения термореактивной смолы, содержащий стадию введения в контакт смолы с (I) от 0,1 до 5 массовых части имина, на 100 весовых частей смолы, структуры C(R2)(R3)=N-R1, где R1 представляет собой линейный или разветвленный алкил, имеющий 1-22 атомов углерода; R2 представляет собой -C(R6)(R5)-C(=0)-R4, где R4, R5 и R6 выбраны из водорода, линейного или разветвленного алкила, имеющего 1-6 атомов углерода, и алкокси, имеющего 1-6 атомов углерода; R3 представляет собой линейный или разветвленный алкил, имеющий 1-22 атомов углерода; и (II) от 0,5 до 5 массовых частей перекиси метилизопропилкетона, на 100 весовых частей смолы.

Изобретение относится к области химии, в частности к составам, предназначенным для проведения работ по выравниванию, уплотнению и герметизации муфтовых стыков стеклопластиковых труб, подверженных воздействия высокоагрессивных сред.

Изобретение относится к способу отверждения термореактивных смол. Описан способ отверждения термореактивной смолы, содержащий стадию введения в контакт смолы с (i) 0,1-5 в.ч.

Изобретение относится к полимерной промышленности и может быть использовано при производстве стеклопластиковых труб и емкостей, используемых в хлорной промышленности.

Изобретение относится к области создания полимерных связующих на основе эпоксивинилэфирного олигомера с наполнителем в виде коротких волокон для полимерных композиционных материалов (ПКМ), получаемых из листового полуфабриката (SMC-препрега) методом прямого прессования (sheet molding compound - SMC-технологии), которые могут быть использованы для изготовления предметов интерьера и объектов инфраструктуры.
Изобретение относится к многокомпонентной отверждаемой композиции, используемой в сфере получения армированных и неармированных пластиков, а также покрытий, и может найти применение в судостроении, в строительстве, например при проведении кровельных работ, получении напольных покрытий, ламинатов, а также, в частности, при изготовлении высокоэнергетической установки.

Настоящее изобретение относится к 3D-формуемому листовому материалу, способу изготовления 3D-формованного изделия, применению целлюлозного материала и по меньшей мере одного состоящего из частиц неорганического материала-наполнителя для получения 3D-формуемого листового материала и для увеличения растяжимости 3D-формуемого листового материала, применению 3D-формуемого листового материала в способах 3D-формования, а также 3D-формованному изделию, включающему в себя соответственный 3D-формуемый листовой материал.
Наверх