Ёмкостный датчик напряжения

Изобретение относится к емкостным датчикам напряжения, предназначенным для определения электрического поля, создаваемого токоведущим элементом самого указанного емкостного датчика. Технический результат заключается в повышении точности измерения электрического напряжения с одновременным повышением прочности, надежности и долговечности емкостного датчика напряжения. Емкостной датчик напряжения содержит питающий электрод, цилиндрический корпусной экран, датчик электрического поля и слой изолирующего материала с диэлектрическими свойствами. Указанный датчик электрического поля содержит по меньшей мере первую внутреннюю пластину и вторую наружную пластину, выполненные перекрывающими друг друга и соединенными друг с другом, причем указанная первая внутренняя пластина выполнена из электропроводного металлического материала, а указанная вторая наружная пластина выполнена из электроизоляционного материала, и при этом указанная вторая наружная пластина, выполненная из электроизоляционного материала, закреплена относительно указанной внутренней стороны цилиндрического корпусного экрана. 29 з.п. ф-лы, 8 ил.

 

Настоящее изобретение относится к емкостным датчикам напряжения, предназначенным для определения электрического поля, создаваемого токоведущим элементом самого указанного емкостного датчика, например для измерения величины напряжения на указанном элементе, по которому протекает электрический ток.

В частности, настоящее изобретение относится к емкостному датчику напряжения, в котором осуществляется определение электрического поля, создаваемого токоведущим элементом самого указанного емкостного датчика, не оказывая при этом какого-либо влияния на окружающее электрическое поле и/или магнитное поле, например на электромагнитное поле, создаваемое другими проводниками и/или другими проходящими поблизости элементами стержневой формы.

Уровень техники

В настоящее время известные из предшествующего уровня техники емкостные датчики напряжения характеризуются рядом недостатков.

Первый недостаток состоит в том, что в объеме смолы, используемой в качестве диэлектрического материала, окружающего емкостной датчик напряжения, содержатся вакуоли (пузырьки воздуха), что в дальнейшем приводит к нежелательному явлению, которое известно как частичный разряд.

Второй недостаток состоит в возможности отслаивания указанной смолы, используемой в качестве диэлектрического материала, от элементов образующих указанный емкостной датчик напряжения, способствуя тем самым появлению в дальнейшем нежелательного явления частичного разряда.

Третий недостаток состоит в том, что указанная смола недостаточно надежно склеена и/или ненадлежащим образом соединена и/или скреплена с элементами, образующими указанный емкостной датчик напряжения и, таким образом, в результате эффекта старения начинают появляться разрывы сплошности соединения между указанной смолой и указанными элементами емкостного датчика напряжения, что также в дальнейшем сопряжено с появлением нежелательного явления частичного разряда. Этот конкретный недостаток проявляется в частности тогда, когда эксплуатация указанного емкостного датчика напряжения осуществляется в среде, в которой изменение рабочей температуры (тепло/холод) имеет циклический характер.

Принимая во внимание вышеуказанные особенности настоящего изобретения, в качестве источников информации, раскрывающих аналогичные технические решения, известные из уровня техники, могут быть предложены нижеследующие документы: WO 2010/070.693 А1, CN 105,588.966 А и US 6.252.388 В1.

Раскрытие изобретения

Таким образом, задача настоящего изобретения состоит в устранении вышеуказанных недостатков.

Технический результат настоящего изобретения заключается в повышении точности измерения электрического напряжения с одновременным повышением прочности, надежности и долговечности емкостного датчика напряжения.

Для достижения вышеуказанного технического результата предложен емкостной датчик напряжения, проходящий в продольном направлении вдоль центральной оси и содержащий питающий электрод, характеризующийся вытянутой формой и проходящий в продольном направлении вдоль центральной оси, при этом указанный питающий электрод снабжен первой осевой торцевой частью и второй осевой торцевой частью, которая противоположна указанной первой осевой торцевой частью; цилиндрический корпусной экран, при этом указанный цилиндрический корпусной экран характеризуется вытянутой формой и выполнен проходящим в продольном направлении вдоль центральной оси, причем указанный цилиндрический корпусной экран снабжен первой осевой частью и второй осевой частью, которая противоположна указанной первой осевой части, при этом указанный цилиндрический корпусной экран формирует корпус, имеющий внутреннюю сторону и наружную сторону); датчик электрического поля, установленный в радиальном направлении вокруг указанного питающего электрода, при этом указанный датчик электрического поля установлен внутри указанного цилиндрического корпусного экрана, причем указанный датчик электрического поля установлен между указанной первой осевой торцевой частью и указанной второй осевой торцевой частью; слой изолирующего материала с диэлектрическими свойствами, причем указанный слой изолирующего материала выполнен с возможностью охватывания указанного цилиндрического корпусного экрана, указанного питающего электрода и указанного датчика электрического поля, при этом указанный датчик электрического поля содержит по меньшей мере первую внутреннюю пластину и вторую наружную пластину, выполненные перекрывающими друг друга и соединенными друг с другом; а указанная первая внутренняя пластина выполнена из электропроводного материала; причем указанная вторая наружная пластина выполнена из электроизоляционного материала, и при этом указанная вторая наружная пластина, выполненная из электроизоляционного материала, закреплена относительно указанной внутренней стороны цилиндрического корпусного экрана.

Согласно настоящему изобретению указанная вторая наружная пластина из изолирующего материала может обладать в качестве технической характеристики свойством электрически изолировать внутреннюю пластину относительно цилиндрического корпусного экрана.

Согласно настоящему изобретению указанный датчик электрического поля может быть выполнен в монолитном корпусе.

Согласно настоящему изобретению указанный датчик электрического поля может быть выполнен в гибком монолитном корпусе.

Согласно настоящему изобретению указанный датчик электрического поля может быть выполнен из пластины для ПП (печатной платы).

Согласно настоящему изобретению указанный цилиндрический корпусной экран может быть снабжен первыми сквозными отверстиями, а указанные первые сквозные отверстия могут характеризоваться шириной, допускающей прохождение смолы через указанные первые сквозные отверстия при выполнении операций заливки указанной смолы для образования емкостного датчика.

Согласно настоящему изобретению указанный датчик электрического поля может быть снабжен вторыми сквозными отверстиями, а указанные вторые сквозные отверстия может характеризоваться шириной, допускающей прохождение смолы через указанные вторые сквозные отверстия при выполнении операций заливки указанной смолы для образования емкостного датчика.

Согласно настоящему изобретению указанные первые сквозные отверстия и указанные вторые сквозные отверстия могут быть выполнены взаимно сообщающимися и/или с выравниванием в осевом направлении таким образом, что создается возможность для прохождения смолы через указанные первые сквозные отверстия и указанные вторые сквозные отверстия при выполнении операций заливки указанной смолы для образования емкостного датчика.

Согласно настоящему изобретению он дополнительно может содержать крепежные средства, установленные на наружной стороне второй наружной пластины.

Согласно настоящему изобретению указанная первая наружная пластина может быть снабжена соответствующими сквозными отверстиями, образованными соответствующим периметром; а указанная вторая наружная пластина может быть снабжена соответствующими сквозными отверстиями, образованными соответствующим периметром, причем сквозные отверстия, образованные в первой внутренней пластине, могут характеризоваться большей высотой, чем сквозные отверстия, образованные во второй наружной пластине для создания между указанными двумя периметрами кольцевого слоя из изолирующего материала.

Краткое описание чертежей

Дополнительные признаки и преимущества настоящего изобретения станут очевидными из текста нижеследующего описания нескольких предпочтительных вариантов осуществления изобретения, приведенных в материалах настоящей заявки исключительно в качестве примеров, не ограничивающих объем притязаний данного изобретения, снабженных ссылками на сопровождающие чертежи, где:

На Фиг. 1 показан первый вариант осуществления объекта настоящего изобретения, представляющего собой емкостной датчик напряжения;

На Фиг. 3 показан второй вариант осуществления объекта настоящего изобретения, когда указанный объект применяется для создания проходной муфты, выполненной с возможностью функционирования в качестве емкостного датчика напряжения;

На Фиг. 5, 6 и 7 показано на схематичном виде и на виде сверху возможный и предпочтительный вариант осуществления изобретения и создания датчика электрического поля перед его установкой внутрь цилиндрического корпусного экрана; при этом на Фиг. 6 показан вид поперечного сечения по секущей линии 4-4, изображенной на Фиг. 5;

На Фиг. 2 показана разновидность конструктивного решения емкостного датчика напряжения в соответствии с первым вариантом осуществления настоящего изобретения, изображенного на Фиг. 1;

На Фиг. 4 показана разновидность конструктивного решения емкостного датчика напряжения в соответствии со вторым вариантом осуществления настоящего изобретения, изображенного на Фиг. 3;

На Фиг. 8 показаны на подробном схематичном виде разновидности конструктивного решения емкостного датчика напряжения, изображенные на Фиг. 2 и 4.

Осуществление изобретения

Примеры предпочтительных вариантов осуществления изобретения

Как показано на сопровождающих чертежах, в материалах заявки заявляется объект настоящего изобретения, представляющий собой емкостной датчик напряжения, проходящий в продольном направлении вдоль центральной оси Y.

Как показано на Фиг. 1 и Фиг. 3, данный емкостной датчик напряжения содержит питающий электрод 110/210, цилиндрический корпусной экран 120/220, датчик электрического поля 130/230 и слой изолирующего материала 140/240 с диэлектрическим свойствами.

Как показано на вышеуказанных чертежах, данный питающий электрод 110/210 характеризуется вытянутой формой и проходит в продольном направлении вдоль центральной оси Y с образованием при этом первой осевой торцевой части 111/211 и второй противолежащей осевой торцевой части 112/212, которая противоположна указанной первой осевой торцевой части 111/211.

Как показано на вышеуказанных чертежах, данный цилиндрический корпусной экран 120/220 характеризуется вытянутой формой и выполнен проходящим в продольном направлении вдоль центральной оси Y с образованием при этом первой осевой торцевой части 121/221 и второй противолежащей осевой торцевой части 122/222.

Указанный цилиндрический корпусной экран 120/220 предпочтительно выполнен заземленным и с возможностью экранирования указанного датчика электрического поля 130/230 относительно силовых линий указанного поля, создаваемых находящихся под напряжением проводящими элементами, расположенными снаружи по отношению к указанному емкостному датчику напряжения, при этом указанный датчик электрического поля 130/230 выполнен с возможностью определения силовых линий поля, создаваемого указанным питающим электродом 110/210.

Указанный цилиндрический корпусной экран 120/220 содержит цилиндрическую гильзу 123/223, причем указанная гильза 123/223 выполнена с возможностью образования внутренней стороны 124/224 и наружной стороны 125/225 относительно центральной оси Y.

Как показано на вышеуказанных чертежах, данный датчик электрического поля 130/230 установлен в радиальном направлении относительно и вокруг указанного питающего электрода 110/210, находясь при этом внутри указанного цилиндрического корпусного экрана 120/220 и, предпочтительно, установлен в средней точке между указанной первой осевой торцевой частью 121/221 и указанной второй осевой торцевой частью 122/222 указанного цилиндрического корпусного экрана 120/220.

Как показано на вышеуказанных чертежах, данный слой изолирующего материала 140/240 с диэлектрическими свойствами выполнен с возможностью охватывания различных элементов указанного емкостного датчика напряжения датчика и, прежде всего и преимущественно, указанного цилиндрического корпусного экрана 120/220, указанного питающего электрода 110/210 и указанного датчика электрического поля 130/230 с целью установки указанных элементов и образования электрически изолированной несущей конструкции.

Также, как показано на Фиг. 5, 6, 7 и 8, указанный датчик электрического поля 130/230 содержит по меньшей мере одну первую внутреннюю пластину 131/231 и вторую наружную пластину 132/232, которые выполнены перекрывающими друг друга и соединенными друг с другом, предпочтительно с образованием монолитной конструкции, как будет подробно описано ниже, причем указанная первая внутренняя пластина 131/231 выполнена из электропроводного материала (металла), а указанная вторая наружная пластина 132/232 выполнена из электроизоляционного материала.

Как показано на вышеуказанных чертежах, данная вторая внешняя пластина 132/232, выполненная из электроизоляционного материала, предпочтительно выполняют приклеенной к указанной внутренней стороне 124/224 цилиндрического корпусного экрана 120/220, например посредством клеевых точек, расположенных на наружной стороне указанной пластины 132/232 и на внутренней стороне 124/224 цилиндрического корпусного экрана 120/220, либо при помощи описываемых ниже иных средств.

Как показано на вышеуказанных чертежах, указанная первая внутренняя пластина 131/231, изготовленная из электропроводного материала, выполнена с возможностью определения силовых линий поля, создаваемого питающим электродом 110/210 и, в частности, с возможностью создания емкостного соединения между указанным питающим электродом 110/210 и указанной первой пластиной 131/231.

В данном контексте, указанная первая пластина 131/231 может иметь различные формы и/или габариты и/или размеры, которые могут отличаться от того, что показано на фигурах чертежей, без отклонения при этом от изобретательского замысла, лежащего в основе настоящего изобретения.

Как показано на вышеуказанных чертежах, указанная вторая наружная пластина 132/232, изготовленная из изоляционного материала, выполнена с возможностью создания опоры для указанной внутренней пластины 131/231 по месту установки, а также с возможностью электроизоляции указанной внутренней пластины 131/231 относительно цилиндрического корпусного экрана 120/220 и, таким образом, указанная вторая пластина 132/232 может иметь форму и/или толщину и/или размер и/или конфигурацию отличные от того, что показано на фигурах сопровождающих чертежей, без отклонения при этом от изобретательского замысла, лежащего в основе настоящего изобретения.

Как показано на Фиг. 2, 4 и 8, указанный цилиндрический корпусной экран 120/220 снабжен первыми сквозными отверстиями 126/226, а указанные первые сквозные отверстия 126/226 характеризуются шириной, допускающей прохождение смолы через указанные первые сквозные отверстия 126/226 при выполнении операций заливки указанной смолы для образования емкостного датчика.

Как показано на Фиг. 5, 6 и 7, указанный датчик электрического поля 130/230 снабжен вторыми сквозными отверстиями 133/233, а указанные вторые сквозные отверстия 133/233 характеризуются шириной, допускающей прохождение смолы через указанные вторые сквозные отверстия 133/233 при выполнении операций заливки указанной смолы для образования емкостного датчика.

Как показано на Фиг. 8, указанные первые сквозные отверстия 126/226 и указанные вторые сквозные отверстия 133/233 выполнены взаимно сообщающимися и/или с выравниванием в осевом направлении таким образом, что создается возможность для прохождения смолы через указанные первые сквозные отверстия 126/226 и указанные вторые сквозные отверстия 133/233 при выполнении операций заливки указанной смолы для образования емкостного датчика.

Как показано на Фиг. 7, указанный датчик электрического поля может дополнительно содержать в качестве необязательного элемента крепежное средство 150, установленное на указанной наружной стороне 133/233 второй наружной пластины 132/232, причем указанное крепежное средство 150 выполнено с возможностью образования соединения между второй пластиной 132/232 и внутренней стороной 124/224 цилиндрического корпусного экрана 120/220.

При отсутствии указанного крепежного средства 150, указанный датчик электрического поля содержит только указанную внутреннюю пластину 131/231 и указанную наружную пластину 132/232, связанную с ней, и снабженную сквозными отверстиями 133/233 для крепления наружной пластины 132/232 относительно и/или к указанной внутренней стороне 124/224 цилиндрического корпусного экрана 120/220 посредством клеевых точек либо иных средств.

Как показано на Фиг. 5, 6 и 7, на чертежах подробно изображен, в частности, датчик электрического поля 130/230, в котором указанная первая внутренняя пластина 131/231 снабжена соответствующими сквозными отверстиями, образованными соответствующим периметром 134/234, при этом вторая наружная пластина 132/232 снабжена соответствующими сквозными отверстиями, образованными соответствующим периметром 135/235, причем сквозные отверстия, образованные в первой внутренней пластине 131/231 характеризуются большей высотой, чем сквозные отверстия, образованные во второй наружной пластине 132/232 для создания между указанными двумя периметрами 134 135/234 235 (т.е. между указанными двумя сквозными отверстиями) кольцевого слоя 136/236 из изолирующего материала.

Как показано на Фиг. 1 и 23 указанное емкостное соединение между указанным питающим электродом 110/210 и датчиком электрического поля 130/230 выполнено с возможностью определения электрического поля, создаваемого питающим электродом 110/210, и относительный сигнал посредством кабеля 160/260 может быть передан в устройство 170/270 обработки, например для оценки величины напряжения, имеющегося на указанном питающем электроде 110/210.

Как показано в вышеуказанном описании, поскольку указанный датчик электрического поля 130/230 выполнен в монолитном корпусе, содержащем по меньшей мере одну первую внутреннюю пластину 131/231 и вторую наружную пластину 132/232, выполненные перекрывающими друг друга и соединенными друг с другом (при помощи клеевого или механического соединения) перед установкой в цилиндрический корпусной экран 120/220, исключается нежелательное отслаивание, смещение/отделение друг от друга указанных пластин, позволяя устранить таким образом вышеуказанные недостатки, а также решить и иные проблемы, связанные со сборкой элементов емкостного датчика напряжения перед их заливкой, так как указанный датчик электрического поля 130/230 несложным и быстрым образом закрепляется/фиксируется по месту установки посредством группы клеевых точек, наносимых между внешней стороной 137/237 указанной наружной пластины 132/232 датчика электрического поля 130/230 и внутренней стороной 124/224 указанного цилиндрического корпусного экрана 120/220.

Как представлено в частном варианте осуществления изобретения, изображенном на Фиг. 8, указанная смола может проходить и затекать через отверстия 133/233, выполненные в указанных двух пластинах 131/231 и 132/232 датчика электрического поля 130/230 в процессе заливки, и некоторое количество указанной смолы также может проходить и затекать через отверстия 126/226 указанного цилиндрического корпусного экрана 120/220, в результате чего наблюдается улучшение характеристик жидкотекучести и характера отверждения указанной смолы, исключается образование вакуолей, а также не происходит нежелательного взаимного смещения/отделения друг от друга цилиндрического корпусного экрана 120/220 и датчика электрического поля 130/230, обеспечивая тем самым устранение вышеуказанных недостатков.

Описание различных вариантов осуществления заявленного емкостного датчика напряжения построено исключительно на поясняющих примерах, не ограничивающих объема притязаний данного изобретения. Таким образом, очевидно, что в вышеуказанный объект изобретения возможно внесение каким-либо образом модификаций или изменений, построенных на основании опыта эксплуатации и/или использования или применения емкостных датчиков напряжения. При этом нижеследующая формула изобретения также составляет неотъемлемую часть вышеуказанного описания изобретения.

1. Емкостной датчик напряжения, проходящий в продольном направлении вдоль центральной оси (Y) и содержащий питающий электрод (110/210), характеризующийся вытянутой формой и проходящий в продольном направлении вдоль центральной оси (Y), при этом указанный питающий электрод (110/210) снабжен первой осевой торцевой частью (111/211) и второй осевой торцевой частью (112/212), которая противоположна указанной первой осевой торцевой части (111/211); цилиндрический корпусной экран (120/220), при этом указанный цилиндрический корпусной экран (120/220) характеризуется вытянутой формой и выполнен проходящим в продольном направлении вдоль центральной оси (Y), причем указанный цилиндрический корпусной экран (120/220) снабжен первой осевой частью (121/221) и второй осевой частью (122/222), которая противоположна указанной первой осевой части (121/221), при этом указанный цилиндрический корпусной экран (120/220) формирует корпус (123/223), имеющий внутреннюю сторону (124/224) и наружную сторону (125/225); датчик электрического поля (130/230), установленный в радиальном направлении вокруг указанного питающего электрода (110/210), при этом указанный датчик электрического поля (130/230) установлен внутри указанного цилиндрического корпусного экрана (120/220), причем указанный датчик электрического поля (130/230) установлен между указанной первой осевой торцевой частью (121/221) и указанной второй осевой торцевой частью (122/222); слой изолирующего материала (140/240) с диэлектрическими свойствами, причем указанный слой изолирующего материала (140/240) выполнен с возможностью охватывания указанного цилиндрического корпусного экрана (130/230), указанного питающего электрода (110/210) и указанного датчика электрического поля (130/230), отличающийся тем, что указанный датчик электрического поля (130/230) содержит по меньшей мере первую внутреннюю пластину (131/231) и вторую наружную пластину (132/232), выполненные перекрывающими друг друга и соединенными друг с другом; а указанная первая внутренняя пластина (131/231) выполнена из электропроводного материала; причем указанная вторая наружная пластина (131/231) выполнена из электроизоляционного материала, и при этом указанная вторая наружная пластина (132/232), выполненная из электроизоляционного материала, закреплена относительно указанной внутренней стороны (124/224) цилиндрического корпусного экрана (120/220).

2. Датчик по п. 1, отличающийся тем, что указанная вторая наружная пластина (132/232) из изолирующего материала обладает в качестве технической характеристики свойством электрически изолировать внутреннюю пластину (121/221) относительно цилиндрического корпусного экрана (120/220).

3. Датчик по п. 1, отличающийся тем, что указанный датчик электрического поля (130/230) выполнен в монолитном корпусе.

4. Датчик по п. 1, отличающийся тем, что указанный датчик электрического поля (130/230) выполнен в гибком монолитном корпусе.

5. Датчик по п. 1, отличающийся тем, что указанный датчик электрического поля (130/230) выполнен из пластины для ПП (печатной платы).

6. Датчик по любому из пп. 2-4, отличающийся тем, что указанный датчик электрического поля (130/230) выполнен из пластины для ПП (печатной платы).

7. Датчик по п. 1, отличающийся тем, что указанный цилиндрический корпусной экран (120/220) снабжен первыми сквозными отверстиями (126/226), а указанные первые сквозные отверстия (126/226) характеризуются шириной, допускающей прохождение смолы через указанные первые сквозные отверстия (126/226) при выполнении операций заливки указанной смолы для образования емкостного датчика.

8. Датчик по любому из пп. 2-4, отличающийся тем, что указанный цилиндрический корпусной экран (120/220) снабжен первыми сквозными отверстиями (126/226), а указанные первые сквозные отверстия (126/226) характеризуются шириной, допускающей прохождение смолы через указанные первые сквозные отверстия (126/226) при выполнении операций заливки указанной смолы для образования емкостного датчика.

9. Датчик по п. 5, отличающийся тем, что указанный цилиндрический корпусной экран (120/220) снабжен первыми сквозными отверстиями (126/226), а указанные первые сквозные отверстия (126/226) характеризуются шириной, допускающей прохождение смолы через указанные первые сквозные отверстия (126/226) при выполнении операций заливки указанной смолы для образования емкостного датчика.

10. Датчик по п. 1, отличающийся тем, что указанный датчик электрического поля (130/230) снабжен вторыми сквозными отверстиями (133/233), а указанные вторые сквозные отверстия (133/233) характеризуются шириной, допускающей прохождение смолы через указанные вторые сквозные отверстия (133/233) при выполнении операций заливки указанной смолы для образования емкостного датчика.

11. Датчик по любому из пп. 2-5 или 7, отличающийся тем, что указанный датчик электрического поля (130/230) снабжен вторыми сквозными отверстиями (133/233), а указанные вторые сквозные отверстия (133/233) характеризуются шириной, допускающей прохождение смолы через указанные вторые сквозные отверстия (133/233) при выполнении операций заливки указанной смолы для образования емкостного датчика.

12. Датчик по п. 9, отличающийся тем, что указанный датчик электрического поля (130/230) снабжен вторыми сквозными отверстиями (133/233), а указанные вторые сквозные отверстия (133/233) характеризуются шириной, допускающей прохождение смолы через указанные вторые сквозные отверстия (133/233) при выполнении операций заливки указанной смолы для образования емкостного датчика.

13. Датчик по п. 7, отличающийся тем, что указанные первые сквозные отверстия (126/226) и указанные вторые сквозные отверстия (133/233) выполнены взаимно сообщающимися и/или с выравниванием в осевом направлении таким образом, что создается возможность для прохождения смолы через указанные первые сквозные отверстия (126/226) и указанные вторые сквозные отверстия (133/233) при выполнении операций заливки указанной смолы для образования емкостного датчика.

14. Датчик по п. 9, отличающийся тем, что указанные первые сквозные отверстия (126/226) и указанные вторые сквозные отверстия (133/233) выполнены взаимно сообщающимися и/или с выравниванием в осевом направлении таким образом, что создается возможность для прохождения смолы через указанные первые сквозные отверстия (126/226) и указанные вторые сквозные отверстия (133/233) при выполнении операций заливки указанной смолы для образования емкостного датчика.

15. Датчик по п. 10, отличающийся тем, что указанные первые сквозные отверстия (126/226) и указанные вторые сквозные отверстия (133/233) выполнены взаимно сообщающимися и/или с выравниванием в осевом направлении таким образом, что создается возможность для прохождения смолы через указанные первые сквозные отверстия (126/226) и указанные вторые сквозные отверстия (133/233) при выполнении операций заливки указанной смолы для образования емкостного датчика.

16. Датчик по п. 12, отличающийся тем, что указанные первые сквозные отверстия (126/226) и указанные вторые сквозные отверстия (133/233) выполнены взаимно сообщающимися и/или с выравниванием в осевом направлении таким образом, что создается возможность для прохождения смолы через указанные первые сквозные отверстия (126/226) и указанные вторые сквозные отверстия (133/233) при выполнении операций заливки указанной смолы для образования емкостного датчика.

17. Датчик по п. 1, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

18. Датчик по п. 2, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

19. Датчик по п. 3, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

20. Датчик по п. 4, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

21. Датчик по п. 5, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

22. Датчик по п. 7, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

23. Датчик по п. 9, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

24. Датчик по п. 10, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

25. Датчик по п. 12, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

26. Датчик по п. 13, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

27. Датчик по п. 14, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

28. Датчик по п. 15, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

29. Датчик по п. 16, отличающийся тем, что он дополнительно содержит крепежные средства (150), установленные на наружной стороне (137/237) второй наружной пластины (132/232).

30. Датчик по любому из пп. 1-5 или 7, или 9, 10, или 12-29, отличающийся тем, что указанная первая наружная пластина (131/231) снабжена соответствующими сквозными отверстиями, образованными соответствующим периметром (134/234); а указанная вторая наружная пластина (132/232) снабжена соответствующими сквозными отверстиями, образованными соответствующим периметром (135/235), причем сквозные отверстия, образованные в первой внутренней пластине (131/231), характеризуются большей высотой, чем сквозные отверстия, образованные во второй наружной пластине (132/232) для создания между указанными двумя периметрами (134 135 / 234 235) кольцевого слоя (136/236) из изолирующего материала.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано при сооружении и эксплуатации систем напряжением до 10 кВ в частотном диапазоне от 17 до 60 Гц.

Изобретение относится к измерительной технике, а именно к устройствам индикации наличия высоковольтного напряжения в сети. Технический результат: повышение электробезопасностью за счет обеспечения гальванической развязки между измерительной и индикаторной цепями, упрощение схемы.

Изобретение относится к измерительной технике и может быть использовано для детектирования одиночных коротких импульсов на фоне синфазных помех и электромагнитных наводок и преобразования выделенной амплитуды в медленно меняющееся напряжение или во временной интервал.

Изобретение относится к области измерения электрических величин, в частности к индикации высокого напряжения. Проверяемый индикатор высокого напряжения характеризуется тем, что в схему индикации с емкостными датчиками высокого напряжения и блоком индикации включена схема тестирования.

Изобретение относится к высоковольтной технике и может быть использовано при проведении ремонтных или профилактических работ для контроля за состоянием высоковольтных цепей постоянного и переменного тока напряжением до 30 кВ, в лабораторных либо полевых условиях.

Изобретение относится к линиям электроснабжения: к проводке, укладке и ремонту контактных линий, а именно к заземляющим устройствам. Сущностью изобретения является то, что токопроводящая часть заземляющей штанги снабжена контролирующим устройством с автономным пультом, причем контролирующее устройство размещено на токопроводящей трубе заземляющей штанги со стороны фиксирующей пружины, включает корпус с хомутом крепления, в котором размещены микроконтроллер с радиомодулем, входом соединенный с источником питания, а выходом со светодиодом, светящийся элемент которого выходит на внешнюю часть корпуса, также на внешней поверхности корпуса со стороны фиксирующей пружины установлена кнопка включения, соединенная входом с источником питания, выходом с микроконтроллером, а автономный пульт находится у обслуживающего персонала и включает корпус, в котором на печатной плате размещены микроконтроллер, радиомодуль, блок питания, часы, жидкокристаллический экран, разъем с SD картой, два светодиода, разъем под кабель, кнопка включения, соединенная входом с источником питания, а выходом с микроконтроллером, при этом оба светодиода, жидкокристаллический экран, кнопка включения и разъем под кабель рабочими частями выходят на наружную поверхность корпуса автономного пульта, а для закрепления заземляющего троса при транспортировке заземляющей штанги на поверхности токопроводящей трубы на расстоянии 300 мм от верхнего и нижнего ее концов размещены крюки.
Изобретение относится к электроизмерительной технике и может быть использовано в целях повышения электробезопасности при дистанционном контроле при выполнении работ на электроустановках напряжением выше 1000 B промышленной частоты особенно в полевых условиях.

Изобретение относится к приборам индикации наличия напряжений в сетях распределительных устройств, а именно к датчикам наличия высокого напряжения в сетях 6-35 кВ. Регулируемый емкостной датчик наличия высокого напряжения включает емкость, в качестве которой используют первый электрод - жилу кабеля; изоляцию кабеля; второй электрод, в качестве которого используют намотанную электропроводную площадку с возможностью изменения шага и длины намотки; и выходные разъемы.

Изобретение относится к электроизмерительной технике и может быть использовано для предупреждения работающего персонала о нахождении коммутационных аппаратов и токоведущих частей электроустановок под напряжением свыше 1000 В.

Изобретение относится к области электротехники и может быть использовано на генерирующих станциях и высоковольтных подстанциях. Технический результат - повышение точности измерения вторичного напряжения.

Изобретение относится к областям радиотехники и измерительной техники и может быть использовано в устройствах измерения параметров случайных сигналов с распределением вероятностей Накагами для оценки характеристик канала связи при наличии замираний и управления системой передачи информации.
Наверх