Способ изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями

Изобретение относится к области медицины, а именно к области травматологии, и может быть использовано для изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями. Выполняют мультиспиральную компьютерную томографию (МСКТ) с 64 срезами за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1. С использованием обзорной скенограммы длиной 150-700 мм осуществляют построение мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной. На изображениях выявляют локализацию, объем и характер внутренней структуры детского позвоночника. Полученную томографическую информацию сохраняют в формате DICOM и переносят в Dolphin Imaging. Выполняют формирование твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании. По данным STL модели формируют G-код. Выполняют на FDM принтере печать модели позвоночника пациента со всеми его аномалиями с высотой печатного слоя не более 0,2 мм в масштабе 1:1. При этом модель позвоночника изготавливают из биологически совместимого и нетоксичного полимерного материала. Причем в качестве биологически совместимого и нетоксичного полимерного материала для изготовления модели позвоночника используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA), или полиамид. Выполняют виртуальное планирование этапов хирургического лечения позвоночника пациента с использованием изготовленной модели позвоночника или его части с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии. Способ обеспечивает виртуальное планирование этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии за счет изготовления предоперационной модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника. 1 з.п. ф-лы, 4 пр.

 

Изобретение относится к области медицины, а именно к области травматологии, к способу изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями и может быть использовано при предоперационном планировании хирургического лечения пациентов с врожденными не классифицируемыми аномалиями позвоночника, в том числе ангулярные кифотические деформации, аплазии структур позвоночного столба в условиях травматолого-ортопедических, хирургических и других стационаров.

Заявителю не удалось обнаружить в патентной и технической литературе источника информации, который можно использовать в качестве ближайшего аналога предлагаемого способа, несмотря на известность способа оценки деформации позвоночника с использованием компьютерного комплекса «3D-Сканер» (см. патент РФ №2445919, МПК А61В 5/103. 27.03.2012), а также статья Бойко А.Е., Кокушин Д.Н. и др. «Хирургическое лечение детей с врожденными деформациями грудного и поясничного отделов позвоночника с использованием технологий 3D-прототипирования», Международный журнал прикладных и фундаментальных исследований, 2020, №7, с. 57-61.

Задачей изобретения является создание способа изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями.

Техническим результатом является обеспечение создания модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, обеспечение создания полномасштабной полимерной модели позвоночника пациента со всеми визуализируемыми индивидуальными анатомическими особенностями позвоночника пациента с врожденными аномалиями и деформациями для виртуального планирования этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии.

Технический результат достигается тем, что предложен способ изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями, характеризующийся тем, что выполняют мультиспиральную компьютерную томографию, в процессе выполнения которой определяют пространственную структуру детского позвоночника с врожденными аномалиями выполнением 64 срезов за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1, с использованием обзорной скенограммы длиной 150-700 мм осуществляют построение мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной, на которых выявляют локализацию, объем и характер внутренней структуры детского позвоночника с врожденными аномалиями, затем полученную томографическую информацию сохраняют в формате DICOM и переносят в Dolphin Imaging с образованием DICOM файлов, выполняют формирование твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании, затем по данным STL модели формируют G-код, с использованием которого выполняют на FDM принтере с высотой печатного слоя не более 0,2 мм печать модели позвоночника пациента со всеми его аномалиями в масштабе 1:1, при этом модель позвоночника, повторяющую все томографически визуализируемые индивидуальные анатомические особенности позвоночника пациента с врожденными аномалиями и деформациями изготавливают из биологически совместимого и нетоксичного полимерного материала, причем в качестве биологически совместимого и нетоксичного полимерного материала для изготовления модели позвоночника используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA), или полиамид, с использованием изготовленной модели позвоночника или его части выполняют виртуальное планирование этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии. При этом дополнительно может быть выполнена печать модели заданной области аномалии развития позвоночника пациента в масштабе 2:1.

Способ осуществляется следующим образом. В предоперационный период перед выполнением хирургического лечения определяют методом многослойной спиральной компьютерной томографии пространственную структуру детского позвоночника с врожденными аномалиями выполнением 64 срезов за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1.

Осуществляют с использованием обзорной скенограммы длиной 150-700 мм построение мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной, на которых выявляют локализацию, объем и характер внутренней структуры детского позвоночника с врожденными аномалиями. Затем полученную томографическую информацию сохраняют в формате DICOM и переносят в Dolphin Imaging с образованием DICOM файлов. Выполняют формирование твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании.

Затем по данным STL модели формируют G-код, с использованием которого выполняют на FDM принтере с высотой печатного слоя не более 0,2 мм печать модели позвоночника пациента со всеми его аномалиями в масштабе 1: 1. При этом может быть дополнительно выполнена печать модели заданной области аномалии развития позвоночника пациента в масштабе 2:1.

Модель позвоночника, повторяющую все томографически визуализируемые индивидуальные анатомические особенности позвоночника пациента с врожденными аномалиями и деформациями изготавливают из биологически совместимого и нетоксичного полимерного материала. Причем в качестве биологически совместимого и нетоксичного полимерного материала для изготовления модели позвоночника используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA), или полиамид.

С использованием изготовленной модели позвоночника или его части выполняют виртуальное планирование этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии.

Среди существенных признаков, характеризующих предложенный способ изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями, отличительными являются:

- выполнение мультиспиральной компьютерной томографит, в процессе которой определение пространственной структуры детского позвоночника с врожденными аномалиями выполнением 64 срезов за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1,

- осуществление с использованием обзорной скенограммы длиной 150-700 мм построения мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной, на которых выявление локализации, объема и характера внутренней структуры детского позвоночника с врожденными аномалиями,

- сохранение полученной томографической информации в формате DICOM и перенесение в Dolphin Imaging с образованием DICOM файлов,

- выполнение формирования твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании,

- формирование по данным STL модели G-кода, с использованием которого выполнение на FDM принтере с высотой печатного слоя не более 0,2 мм печати модели позвоночника пациента со всеми его аномалиями в масштабе 1:1,

- изготовление модели позвоночника, повторяющей все томографически визуализируемые индивидуальные анатомические особенности позвоночника пациента с врожденными аномалиями и деформациями из биологически совместимого и нетоксичного полимерного материала,

- использование в качестве биологически совместимого и нетоксичного полимерного материала для изготовления модели позвоночника акрилонитрил-бутадиенстирола (ABS), или полиэтилентерефталата с гликолем (PET-G), или полилактида (PLA), или полиамида,

- выполнение с использованием изготовленной модели позвоночника или его части виртуального планирования этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии,

- выполнение дополнительно печати модели заданной области аномалии развития позвоночника пациента в масштабе 2:1.

Экспериментальные и клинические исследования предложенного способа изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями показали его высокую эффективность. Предложенный способ изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями при своем использовании обеспечил создание полимерной модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, обеспечил создание полномасштабной полимерной модели позвоночника пациента со всеми визуализируемыми индивидуальными анатомическими особенностями позвоночника пациента с врожденными аномалиями и деформациями для виртуального планирования этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении предстоящей коррегирующей остеотомии.

Реализация предложенного способа изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями иллюстрируется следующими клиническими примерами.

Пример 1. Пациентка П., 12 лет, поступила в 10-ое отделение ФГБУ «НМИЦ ТО им. Н.Н. Приорова» с диагнозом: «Аномалия развития позвоночника». Состояние после удаления спинномозговой грыжи. Кифотическая деформация грудопоясничного отдела позвоночника III степени. Состояние после операции. Компенсированная гидроцефалия, шунтозависимая.

В предоперационный период перед выполнением хирургического лечения определили методом многослойной спиральной компьютерной томографии пространственную структуру позвоночника пациентки с врожденными аномалиями выполнением 64 срезов за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1.

Осуществили с использованием обзорной скенограммы длиной 750 мм построение мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной, на которых выявили локализацию, объем и характер внутренней структуры позвоночника с врожденными аномалиями, характеризующиеся кифотической деформацией грудопоясничного отдела позвоночника III степени.

Затем полученную томографическую информацию сохранили в формате DICOM и перенесли в Dolphin Imaging с образованием DICOM файлов. Выполнили формирование твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании.

Затем по данным STL модели сформировали G-код, с использованием которого выполнили на FDM принтере с высотой печатного слоя не более 0,2 мм печать модели позвоночника пациента со всеми его аномалиями в масштабе 1 к 1. При этом модель позвоночника, повторяющую все томографически визуализируемые индивидуальные анатомические особенности позвоночника пациента с врожденными аномалиями и деформациями изготовили из биологически совместимого и нетоксичного полимерного материала, в качестве которого использовали полиэтилентерефталат с гликолем (PET-G).

С использованием изготовленной модели позвоночника выполнили виртуальное планирование этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии.

Пример 2. Пациент X., 5 лет, поступил в 10-ое отделение ФГБУ «НМИЦ ТО им. Н.Н. Приорова» с диагнозом: «Врожденный кифоз поясничного отдела позвоночника». Множественные смешанные аномалии грудного и поясничного отделов позвоночника. Аплазия задних элементов поясничного и грудного отдела позвоночника. Диастематомиелия грудного отдела позвоночника (костная форма).

В предоперационный период перед выполнением хирургического лечения определили методом многослойной спиральной компьютерной томографии пространственную структуру позвоночника пациента с врожденными аномалиями выполнением 64 срезов за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1.

Осуществили с использованием обзорной скенограммы длиной 150 мм построение мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной, на которых выявили локализацию, объем и характер внутренней структуры позвоночника с врожденными аномалиями, характеризующиеся множественными смешанные аномалии грудного и поясничного отделов позвоночника.

Затем полученную томографическую информацию сохранили в формате DICOM и перенесли в Dolphin Imaging с образованием DICOM файлов. Выполнили формирование твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании.

Затем по данным STL модели сформировали G-код, с использованием которого выполнили на FDM принтере с высотой печатного слоя не более 0,2 мм печать модели позвоночника пациента со всеми его аномалиями в масштабе 1 к 1. А также дополнительно выполнили печать модели заданной области аномалии развития позвоночника пациента в масштабе 2 к 1. При этом модель позвоночника и дополнительную увеличенную модель позвоночника, повторяющие все томографически визуализируемые индивидуальные анатомические особенности позвоночника пациента с врожденными аномалиями и деформациями изготовили из биологически совместимого и нетоксичного полимерного материала, в качестве которого использовали акрилонитрилбута-диенстирол (ABS).

С использованием изготовленной модели позвоночника выполнили виртуальное планирование этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии.

Пример 3. Пациент Б., 6 лет, поступил в 10-ое отделение ФГБУ «НМИЦ ТО им. Н.Н. Приорова» с диагнозом: «Аномалия развития позвоночника». Врожденный кифосколиоз шейно-грудного отдела позвоночника IV степени. Состояние после оперативного вмешательства. Нестабильность металлоконструкции.

В предоперационный период перед выполнением хирургического лечения определили методом многослойной спиральной компьютерной томографии пространственную структуру позвоночника пациента с врожденными аномалиями выполнением 64 срезов за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1.

Осуществили с использованием обзорной скенограммы длиной 300 мм построение мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной, на которых выявили локализацию, объем и характер внутренней структуры позвоночника с врожденными аномалиями, характеризующиеся рожденным кифосколиозом шейно-грудного отдела позвоночника IV степени.

Затем полученную томографическую информацию сохранили в формате DICOM и перенесли в Dolphin Imaging с образованием DICOM файлов. Выполнили формирование твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании.

Затем по данным STL модели сформировали G-код, с использованием которого выполнили на FDM принтере с высотой печатного слоя не более 0,2 мм печать модели позвоночника пациента со всеми его аномалиями в масштабе 1:1. При этом модель позвоночника, повторяющую все томографически визуализируемые индивидуальные анатомические особенности позвоночника пациента с врожденными аномалиями и деформациями изготовили из биологически совместимого и нетоксичного полимерного материала, в качестве которого использовали полилактид (PLA).

С использованием изготовленной модели позвоночника выполнили виртуальное планирование этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии.

Пример 4. Пациент Б., 7 лет, поступил в 10-ое отделение ФГБУ «НМИЦ ТО им. Н.Н. Приорова» с диагнозом: «Множественные аномалии развития позвоночника» Полупозвонки С7, Th3. Врожденный левосторонний шейно-грудной сколиоз IV степени. Торакалгия.

В предоперационный период перед выполнением хирургического лечения определили методом многослойной спиральной компьютерной томографии пространственную структуру позвоночника пациента с врожденными аномалиями выполнением 64 срезов за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1.

Осуществили с использованием обзорной скенограммы длиной 510 мм построение мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной, на которых выявили локализацию, объем и характер внутренней структуры позвоночника с врожденными аномалиями, характеризующиеся множественными аномалиями развития позвоночника.

Затем полученную томографическую информацию сохранили в формате DICOM и перенесли в Dolphin Imaging с образованием DICOM файлов. Выполнили формирование твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании.

Затем по данным STL модели сформировали G-код, с использованием которого выполнили на FDM принтере с высотой печатного слоя не более 0,2 мм печать модели позвоночника пациента со всеми его аномалиями в масштабе 1 к: 1. При этом модель позвоночника, повторяющую все томографически визуализируемые индивидуальные анатомические особенности позвоночника пациента с врожденными аномалиями и деформациями изготовили из биологически совместимого и нетоксичного полимерного материала, в качестве которого использовали полиамид.

С использованием изготовленной модели позвоночника выполнили виртуальное планирование этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии.

1. Способ изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями, характеризующийся тем, что выполняют мультиспиральную компьютерную томографию, в процессе выполнения которой определяют пространственную структуру детского позвоночника с врожденными аномалиями выполнением 64 срезов за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1, с использованием обзорной скенограммы длиной 150-700 мм осуществляют построение мультипланарных реконструкций изображения в двух взаимно перпендикулярных плоскостях - фронтальной и сагиттальной, на которых выявляют локализацию, объем и характер внутренней структуры детского позвоночника с врожденными аномалиями, затем полученную томографическую информацию сохраняют в формате DICOM и переносят в Dolphin Imaging с образованием DICOM файлов, выполняют формирование твердотельной STL 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника, представляющих интерес при предоперационном исследовании, затем по данным STL модели формируют G-код, с использованием которого выполняют на FDM принтере с высотой печатного слоя не более 0,2 мм печать модели позвоночника пациента со всеми его аномалиями в масштабе 1:1, при этом модель позвоночника, повторяющую все томографически визуализируемые индивидуальные анатомические особенности позвоночника пациента с врожденными аномалиями и деформациями изготавливают из биологически совместимого и нетоксичного полимерного материала, причем в качестве биологически совместимого и нетоксичного полимерного материала для изготовления модели позвоночника используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA), или полиамид, с использованием изготовленной модели позвоночника или его части выполняют виртуальное планирование этапов хирургического лечения позвоночника пациента с определением точек размещения имплантов и мальпозиции фиксирующих винтов металлофиксации при проведении коррегирующей остеотомии.

2. Способ по п. 1, характеризующийся тем, что дополнительно может быть выполнена печать модели заданной области аномалии развития позвоночника пациента в масштабе 2:1.



 

Похожие патенты:

Изобретение относится к медицине, а именно к ангиологии, сосудистой хирургии, рентгенологии и может быть использовано для диагностики синдрома высокой перемежающейся хромоты у больных после операций на аортоподвздошном сегменте. Определяют среднюю скорость кровотока в ягодичных мышцах.
Изобретение относится к медицине, в частности к кардиохирургии. Выполняют продольную стернотомию.

Изобретение относится к медицине, а именно к лучевой диагностике, и может быть использовано для дифференциальной диагностики доброкачественных и злокачественных опухолей печени у детей. Получают изображения методом магнитно-резонансной томографии (МРТ).

Группа изобретений относится к медицине. Детектор рентгеновского излучения аппарата для формирования двухэнергетических данных рентгеновского изображения располагают относительно источника рентгеновского излучения так, что по меньшей мере часть зоны между источником рентгеновского излучения и детектором рентгеновского излучения представляет собой область исследования для размещения объекта.

Группа изобретений относится к медицине. Детектор рентгеновского излучения аппарата для формирования двухэнергетических данных рентгеновского изображения располагают относительно источника рентгеновского излучения так, что по меньшей мере часть зоны между источником рентгеновского излучения и детектором рентгеновского излучения представляет собой область исследования для размещения объекта.
Изобретение относится к области медицины, а именно к хирургии, и может быть использовано для прогнозирования риска развития послеоперационных осложнений после панкреатодуоденальной резекции. Выполняют компьютерную томографию при строго симметричном относительно средней линии тела горизонтальном положении пациента.

Изобретение относится к области медицины, в частности к рентгенологии, и может быть использовано для исследования состояния легких при подозрении на COVID-19 с помощью низкодозной компьютерной томографии. Проводят сканирование при положении пациента на спине с отведенными к голове руками, при задержке дыхания на глубине вдоха.

Способ относится к медицине, а именно к лучевой диагностике, и может быть использован для определения модуля сдвига для стенки кровеносного сосуда на основе интраваскулярной оптической когерентной томографии. Получают структурные изображения оптической когерентной томографии (ОКТ) для исследуемого участка стенки кровеносного сосуда.

Изобретение относится к области медицины, в частности к рентгенологии, онкологии и пульмонологии, и может быть использовано как скрининговый метод рака легкого. Способ скрининга рака легкого с помощью ультранизкодозной компьютерной томографии у пациентов с массой тела от 70 до 89 кг содержит этапы, на которых: проводят сканирование при положении пациента на спине с отведенными к голове руками; проводят сканирование при задержке дыхания на глубине вдоха; устанавливают протяженность сканирования от верхушек легких до легочных синусов; устанавливают фильтр для исследования легких.
Изобретение относится к области медицины, в частности к рентгенологии, онкологии и пульмонологии, и может быть использовано как скрининговый метод рака легкого. Способ скрининга рака легкого с помощью ультранизкодозной компьютерной томографии у пациентов с массой тела более 90 кг, содержащий этапы, на которых проводят сканирование при положении пациента на спине с отведенными к голове руками, проводят сканирование при задержке дыхания на глубине вдоха, устанавливают протяженность сканирования от верхушек легких до легочных синусов, устанавливают фильтр для исследования легких.

Группа изобретений относится к медицинской технике, а именно к аппарату для выполнения процедур холодной атмосферной плазмы и аппарату холодной атмосферной плазмы. Аппарат для выполнения процедур содержит корпус, камеру внутри этого корпуса, входное отверстие этой камеры.
Наверх