Способ получения порошковых магнитотвердых сплавов на основе системы fe-cr-co

Изобретение относится к способу получения порошковых магнитотвердых сплавов на основе системы Fe-Cr-Co магнитотвердых сплавов. Исходную порошковую шихту, содержащую железо, хром и кобальт, готовят путем плавления в атомизаторе металлических слитков железа, хрома и кобальта и газового распыления расплава с получением сферического порошка. Из полученного сферического порошка выделяют сферический порошок с дисперсностью не более 80 мкм и сферический порошок с дисперсностью более 80 мкм, который подвергают струйному измельчению с получением осколочного порошка с дисперсностью не более 80 мкм. Затем полученные сферический и осколочный порошки с дисперсностью не более 80 мкм смешивают. Консолидацию приготовленной исходной порошковой шихты проводят методом селективного лазерного сплавления. Сферический порошок с дисперсностью не более 80 мкм смешивают с осколочным порошком с дисперсностью не более 80 мкм в пропорциях 1:1 или 4:1. Обеспечивается получение магнитотвердых порошков из сплавов системы Fe-Cr-Co с выходом годного продукта более 90% и возможность использования полученных порошков в аддитивном производстве. 1 з.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к способам получения магнитотвердых сплавов на основе системы Fe-Cr-Co для использования в аддитивном производстве.

На сегодняшний день наиболее эффективными способами получения металлических порошковых материалов, пригодных для использования в селективном лазерном сплавлении, лазерной наплавке и прочих аддитивных технологиях, являются методы распыления расплава в газовой среде, в плазменной струе и механическое измельчение (механоактивация). Такие методы позволяют получить порошок высокой степени сферичности, с фракционным составом менее 80 мкм, удовлетворяющий требованиям селективного лазерного сплавления. Однако из-за особенностей технологий получения невозможно обеспечить выход годного продукта (порошка) требуемого фракционного состава более 60% для магнитотвердых сплавов ввиду их сложных физико-химических свойств.

Одним из технических решений повышения коэффициента выхода годного продукта и сохранения степени сферичности является струйное измельчение атомизированного порошка дисперсности более 80 мкм и смешивание полученного измельченного порошка с атомизированным порошком удовлетворительных фракций (менее 80 мкм) в различных пропорциях. Изменение пропорций порошков позволяет управлять свойствами получаемых из них аддитивных изделий. На данный момент существуют патенты на способы получения магнитотвердых сплавов на основе системы Fe-Cr-Co такие, как RU 2534473, RU 2601149 C1, RU 2508964 C1, US 4601876, US 3529776, а также способы получения сплавов описаны в [1]. Наиболее близким к заявленному способу и принятым нами за прототип является способ, изложенный в патенте RU 2533068 С1.

Недостатком известного способа, принятого нами за прототип, как и указанных аналогов, является тот факт, что образуются отходы порошков фракций более 80 мкм, не пригодные к использованию в селективном лазерном сплавлении.

Существующие исследования свидетельствуют о том, что для простейших сталей, то есть сталей типа 12Х18Н10Т, 08X13 и др., выход порошка фракции 20-80 мкм составляет не более 60% от первоначальной загрузки при получении его газовой атомизацией [2, 3]. Остальной порошок не пригоден для использования в технологии селективного лазерного сплавления ввиду ее технологических особенностей (для построения порошковый слой намазывается керамическим ножом, чувствительным к размерам частиц, крупные частицы могут повредить нож). Повторно загружать крупный порошок в атомизатор невозможно, т.к. по принципу действия он рассчитан на распыление слитков.

Таким образом, известные технические решения, включая описанные в книге [1], не позволяют эффективно производить магнитотвердые сплавы на основе системы Fe-Cr-Co.

Техническим результатом изобретения является создание способа получения магнитотвердых порошков из сплавов системы Fe-Cr-Co, обеспечивающего выход годного продукта более 90% и возможность применения для целей аддитивного производства.

Технический результат достигается тем, что способ получения порошковых магнитотвердых сплавов на основе системы Fe-Cr-Co включает приготовление исходной порошковой шихты, содержащей железо, хром, кобальт и легирующий элементы, при этом подготавливают порошковую шихту смешиванием атомизированного сферического порошка с дисперсностью не более 80 мкм, полученного газовым распылением, и осколочного порошка с дисперсностью не более 80 мкм, полученного струйным измельчением из сферического порошка с дисперсностью более 80 мкм, а консолидация шихты производится методом селективного лазерного сплавления. При этом атомизированный сферический порошок смешивают с осколочным порошком в пропорциях 1 к 1 или на 1 часть осколочного порошка 4 части атомизированного сферического порошка.

Порошок фракции более 80 мкм при традиционных способах получения порошковых магнитотвердых сплавов на основе системы Fe-Cr-Co является побочным продуктом и подлежит утилизации, поскольку не применим для целей аддитивного производства. В предлагаемом способе порошок фракции более 80 мкм подвергается струйному измельчению и смешивают гравитационным методом со сферическим порошком фракции менее 80 мкм, полученным атомизацией. При вращении емкости смесителя загруженные в него порошки циклически падают от одного торца емкости к другому хорошо перемешиваясь. Таким образом обеспечивают возможность полезного использования до 96% исходного материла.

Атомизатор плавит металлические слитки железа, хрома и кобальта, распыляет расплав, после чего производится сбор готового порошка всех фракций. Выделение требуемой фракции менее 80 производится центробежным методом в газовом потоке, при котором также удаляется влага из порошков.

После прохода через систему сит порошок, не соответствующий фракции менее 80, собирается в емкость и производится его струйное измельчение. Измельчение происходит в размольной камере, в которую подается газ под давлением. Мелющий поток через сопла поступает в камеру измельчения, где формирует аэрозоль из твердого измельчаемого вещества. Вокруг струй мелющего газа происходит интенсивная циркуляция частиц. При входе потока газа материал вовлекается в поток и ускоряется до скорости потока. Во время вовлечения частиц материала в поток происходят интенсивные столкновения частиц друг с другом. В зоне входа частиц в аэрозоль происходит измельчение ~70% материала, оставшиеся 30% измельчаются при встрече, смене направления или отражении частиц, двигающихся в мелющем потоке.

Пропорция смеси 1 к 1 используется для создания изделий с большой пористостью, имеющих специальное назначение (виброгасители, героидные структуры).

Пропорция смеси на 1 часть осколочного порошка к 4 частям атомизированного сферического порошка используется для создания изделий с высокой плотностью, обеспечивающих максимальные механические и магнитные свойства.

Технико-экономический эффект заключается в экономии материалов при подготовке порошковых магнитотвердых сплавов на основе системы Fe-Cr-Co, на основе которых получают магниты со следующими свойствами: остаточной индукцией 1,1 Тл, коэрцитивной силой 41,7 кА/м, максимальным энергетическим произведением 38,7 кДж/м3, что превосходит свойства магнитов тех же сплавов, полученных традиционными литейными технологиями.

Пример реализации изобретения представлен ниже и в таблице 1 в приложении 1.

Пример выполнения 1

В НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей" с использованием атомизатора Hermiga 75/3IV и струйной мельницы LNJST-18A с последующим перемешиванием при помощи гравитационного смесителя в пропорциях на 1 часть осколочного порошка к 4 частям атомизированного сферического порошка были изготовлены порошковые смеси магнитотвердых сплавов системы Fe-Cr-Co. Смеси были сплавлены на установке селективного лазерного сплавления Russian SLM FACTORY. За счет подбора данной пропорции и фракций были получены магниты в виде тарелок со следующими свойствами: остаточной индукцией 1,1 Тл, коэрцитивной силой 41,7 кА/м, максимальным энергетическим произведением 38,7 кДж/м3, что превосходит свойства магнитов тех же сплавов, полученных традиционными литейными технологиями. При этом расход годного порошка составил 97%.

Пример выполнения 2

В НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей" с использованием атомизатора Hermiga 75/3IV и струйной мельницы LNJST-18A с последующим перемешиванием при помощи гравитационного смесителя в пропорциях 1 к 1 были изготовлены порошковые смеси магнитотвердых сплавов системы Fe-Cr-Co. Смеси были сплавлены на установке селективного лазерного сплавления Russian SLM FACTORY. За счет подбора данной пропорции и фракций были получены пористые магниты в виде сотовых амортизаторов. При этом расход годного порошка составил 96%.

Список использованных источников

[1] Рудской А.И., Волков К.Н., Кондратьев С.Ю., Соколов Ю.А. Физические процессы и технологии получения металлических порошков из расплава. СПб: Изд-во Политехн. ун-та, 2018. - 610 с.

[2] Шишковский И.В. Лазерный синтез функционально-градиентных мезоструктур и объемных изделий. М.: Физматлит, 2009. - 424 с.

[3] Патент РФ 2458075 С2. Способ атомизации / Ф. Осада, С. Фукузава, К. Нашаи. Заявл. 10.03.2008, Опубл. 10.08.2012 // Бюл. 2012. №22.

1. Способ получения порошковых магнитотвердых сплавов на основе системы Fe-Cr-Co, включающий приготовление исходной порошковой шихты, содержащей железо, хром и кобальт, и ее консолидацию с получением сплава, отличающийся тем, что приготовление исходной порошковой шихты проводят путем плавления в атомизаторе металлических слитков железа, хрома и кобальта и газового распыления расплава с получением сферического порошка, из которого выделяют сферический порошок с дисперсностью не более 80 мкм и сферический порошок с дисперсностью более 80 мкм, который подвергают струйному измельчению с получением осколочного порошка с дисперсностью не более 80 мкм, затем полученные сферический и осколочный порошки с дисперсностью не более 80 мкм смешивают, а консолидацию приготовленной исходной порошковой шихты проводят методом селективного лазерного сплавления.

2. Способ по п. 1, отличающийся тем, что сферический порошок с дисперсностью не более 80 мкм смешивают с осколочным порошком с дисперсностью не более 80 мкм в пропорциях 1:1 или 4:1.



 

Похожие патенты:

Изобретение относится к области аддитивных технологий, в частности, к устройству и способу для изготовления трехмерных изделий из порошка. Устройство для изготовления трехмерных изделий содержит носитель, выполненный с возможностью приема множества слоев порошка исходного материала, блок облучения, выполненный с возможностью направления луча излучения в заданные места верхнего слоя порошка для его отверждения в заданных местах, технологическую камеру и опорную конструкцию, расположенную вне технологической камеры и поддерживающую блок облучения.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе для изготовления изделий селективным лазерным сплавлением. Жаропрочный порошковый сплав на основе никеля для изготовления изделий селективным лазерным сплавлением содержит, мас.%: хром 1,6-2,4, кобальт 3,0-4,0, алюминий 5,6-6,2, вольфрам 4,6-5,6, молибден 1,6-2,6, тантал 6,0-7,8, углерод 0,12-0,2, бор 0,008-0,03, рений 5,4-7,4, рутений 4,0-6,0, иттрий 0,002-0,02, церий 0,001-0,02, лантан 0,002-0,2, неодим 0,005-0,01, магний 0,001-0,009, кальций 0,001-0,009, кислород 0,0001-0,002, азот 0,0001-0,002, никель – остальное.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе для изготовления изделий селективным лазерным сплавлением. Жаропрочный порошковый сплав на основе никеля для изготовления изделий селективным лазерным сплавлением содержит, мас.%: хром 1,6-2,4, кобальт 3,0-4,0, алюминий 5,6-6,2, вольфрам 4,6-5,6, молибден 1,6-2,6, тантал 6,0-7,8, углерод 0,12-0,2, бор 0,008-0,03, рений 5,4-7,4, рутений 4,0-6,0, иттрий 0,002-0,02, церий 0,001-0,02, лантан 0,002-0,2, неодим 0,005-0,01, магний 0,001-0,009, кальций 0,001-0,009, кислород 0,0001-0,002, азот 0,0001-0,002, никель – остальное.

Изобретение относится к устройству для калибровки системы облучения установки для изготовления трехмерных изделий и способу калибровки системы облучения для изготовления трехмерных изделий. Устройство (10) для калибровки системы (12) облучения установки (14) для изготовления трехмерных изделий, в котором система (12) облучения содержит первый блок (16) облучения для селективного излучения первого луча (18) облучения вдоль первой рабочей оси (20) на плоскость (22) облучения и второй блок (24) облучения для селективного излучения второго луча (26) облучения вдоль второй рабочей оси (28) на плоскость (22) облучения.

Изобретение относится к области аддитивного производства, в частности к способу создания конструкций на имеющихся деталях. На по меньшей мере одной подлежащей обработке поверхности детали посредством устройства для аддитивного производства создают структуру.

Изобретение относится к технологии аддитивного производства, в частности к способу изготовления детали путем послойного наплавления с параллельным контролем деформации и точности изготовления детали во время процесса. Может использоваться в аэрокосмической, судостроительной, военной промышленности, а также в отрасли, занятой высокоскоростным железнодорожным сообщением.

Изобретение относится к технологии аддитивного производства, в частности к способу изготовления детали путем послойного наплавления с параллельным контролем деформации и точности изготовления детали во время процесса. Может использоваться в аэрокосмической, судостроительной, военной промышленности, а также в отрасли, занятой высокоскоростным железнодорожным сообщением.

Изобретение относится к металлургии, в частности к сплавам на основе титана, которые могут использоваться для изготовления деталей с использованием аддитивных технологий. Сплав на основе титана, содержащий по меньшей мере один элемент из ряда лантаноидов от 0,001 до 1,0 мас.

Настоящее изобретение относится к получению катализаторов с использованием подложки, приготовленной путем аддитивного послойного производства. Способ получения катализатора или прекурсора катализатора включает:(i) объединение материала подложки в форме частиц со связующим веществом с формированием смеси заготовки,(ii) формирование слоя смеси заготовки,(iii) нанесение связывающего растворителя из печатающей головки на слой смеси заготовки в соответствии с заданным рисунком для связывания материала подложки в форме частиц,(iv) повторение стадий (ii) и (iii) слой за слоем,(v) удаление несвязанного материала, и(vi) сушку и необязательно кальцинирование с формированием структуры подложки,(vii) нанесение суспензии соединения катализатора в форме частиц в текучей среде-носителе на полученную посредством аддитивного послойного производства структуру подложки с формированием пропитанной суспензией подложки, и(viii) сушку и необязательно кальцинирование пропитанной суспензией подложки с формированием прекурсора катализатора или катализатора,причем средний размер частиц (D50) соединения катализатора в форме частиц в суспензии находится в диапазоне 1-50 мкм, и структура подложки имеет пористость от 0,02 до 1,4 мл/г, и средний размер частиц соединения катализатора в форме частиц меньше, чем распределение размера пор.

Изобретение относится к металлургии, а именно к получению мишени из суперсплавов для катодного вакуумно-дугового нанесения покрытий. Мишень из суперсплава на основе порошка никеля или порошка кобальта для катодного вакуумно-дугового нанесения покрытий выполнена из легированного порошка суперсплава на основе никеля или кобальта, содержащего интерметаллические соединения, и имеет поликристаллическую структуру со случайной ориентацией зерен, при этом средний размер зерна в структуре мишени составляет менее 50 мкм, а пористость структуры составляет менее 10%.

Изобретение относится к области аддитивных технологий, в частности к устройству и способу для изготовления трехмерных изделий. Устройство для изготовления трехмерных изделий содержит носитель, выполненный с возможностью приема множества слоев исходного материала, и блок облучения, выполненный с возможностью генерирования пучка излучения и направления пучка излучения в заданные места верхнего слоя исходного материала для отверждения исходного материала в заданных местах. Блок облучения содержит источник излучения, выполненный с возможностью генерирования пучка излучения, первый блок развертки, выполненный с возможностью приема пучка излучения и развертки пучка излучения по первой области облучения верхнего слоя исходного материала, второй блок развертки, выполненный с возможностью приема пучка излучения и развертки пучка излучения по второй области облучения верхнего слоя исходного материала, и блок переключения, выполненный с возможностью направления пучка излучения, генерируемого источником излучения, в первый блок развертки или второй блок развертки. Блок управления блоком переключения выполнен с возможностью переключения из первого состояния, в котором пучок излучения направлен в первый блок развертки, во второе состояние переключения, в котором пучок излучения направлен во второй блок развертки, но не в первый блок развертки. Обеспечивается возможность увеличения размеров получаемого изделия в трех направлениях без снижения его качества. 2 н. и 13 з.п. ф-лы, 3 ил.
Наверх