Устройство для определения комплекса теплофизических характеристик композиционных материалов

Изобретение относится к области теплофизических исследований, определения комплекса теплофизических характеристик композиционных конструкционных и теплотехнических материалов на образцах полуцилиндрической формы. Устройство состоит из основания, подвижной и неподвижной прижимных планок нагревательного элемента, нагревательного элемента, имеющего полуцилиндрическую форму с увеличенной толщиной в зонах крепления нагревательного элемента, электроизолирующих пластин, узлов натяжения нагревательного элемента, полуцилиндрического образца, который установлен на внутренней поверхности нагревательного элемента, управляющей термопары, термопар, установленных на поверхности и внутри образца, защитных теплоизолирующих элементов с установленными в них нестационарными датчиками теплового потока, термопар, установленных в датчиках теплового потока, проводников, установленных на нагревательном элементе, защитных теплоизолирующих элементов боковых поверхностей образцов, нижнего и верхнего узлов подвеса образца в устройстве. Технический результат - возможность определения и повышение точности определения комплекса теплофизических характеристик исследуемых материалов на образцах полуцилиндрической формы. 4 з.п. ф-лы, 9 ил.

 

Изобретение относится к области теплофизических исследований и может быть использовано для определения комплекса теплофизических характеристик композиционных конструкционных и теплотехнических материалов на образцах полуцилиндрической формы, а именно коэффициента теплопроводности и теплоемкости в широком диапазоне температур по результатам единичного эксперимента с использованием методов обратных задач теплообмена [1, 2].

Методы определения теплофизических свойств материалов, основанные на решении коэффициентных обратных задач теплообмена получили широкое распространение [1, 3]. Данные методы имеют ряд преимуществ перед традиционными методами определения теплофизических характеристик, особенно для материалов используемых в широком диапазоне температур (в том числе экстремальных температур), в условиях нестационарного нагрева, при больших скоростях и градиентах изменения температуры, а часто, и при наличии фазовых превращений в материале. Такие условия нагрева характерны для конструкционных, теплоизоляционных и теплозащитных материалов используемых в конструкциях аэрокосмической техники, ядерной энергетики и металлургии.

Широкое применение в этих отраслях находят композиционные материалы на основе каркаса из специальным образом ориентированных волокон в связывающей их матрице, например, такие как углерод-углерод, карбид кремния - углерод, карбид кремния - карбид кремния, керамико-матричные материалы и др. [4], а также перспективные градиентные материалы, механические и физические свойства которых изменяются, например, по толщине материала. Структура таких материалов, в частности их объемный каркас, как правило формируется с учетом условий их работы в составе конкретной, разрабатываемой композиционной конструкции. При этом регулярная структура материала искажается. Можно предположить, что теплофизические свойства таких материалов зависят, в частности, от формы композиционной конструкции. В связи с этим, возникает задача определения теплофизических характеристик композиционным конструкционных и теплотехнических материалов на образцах сложной формы, сходной с формой исследуемого элемента конструкции.

Экспериментальные образцы полуцилиндрической формы достаточно хорошо моделируют форму реальных элементов композиционных конструкций, например, таких как передние кромки затуплений аэродинамических поверхностей летательных аппаратов, включая кромки воздухозаборных устройств, крыльев, рулей и других аэродинамических поверхностей. При этом образцы такой формы позволяют использовать в теплофизических исследованиях более простые одномерные модели теплообмена в цилиндрической системе координат [1, 3].

Известно устройство [5] реализующее стационарный метод определения коэффициента теплопроводности материалов, устанавливаемое в газовакуумную рабочую камеру, состоящее из плоского тонкого ленточного нагревательного элемента, размещенного горизонтально, к обеим сторонам которого с контролируемым усилием прижимаются два одинаковых плоских образца исследуемого материала, на обратных поверхностях которых размещаются плоские теплосъемники (неподвижный нижний и подвижный верхний). На нижних и верхних (по отношению к нагревательному элементу) поверхностях образцов устанавливаются термопары. Боковые поверхности образцов защищаются охранными теплоизолирующими элементами, что обеспечивает в центральной части нагревательного элемента реализацию достаточно равномерного поля температур. Симметричная схема размещения образцов обеспечивает возможность определения плотности теплового потока на его поверхности по электрической мощности, выделяемой на расчетной площади рабочей зоны нагревательного элемента.

Недостатками данного устройства являются: отсутствие возможности исследования образцов материалов с формой отличной от плоской пластины, отсутствие компенсации термической деформации нагревательного элемента в продольном и поперечном направлениях, что может приводить к его деформации и вызывать искажение равномерного температурного поля в рабочей зоне нагревательного элемента, и как следствие к снижению точности определения коэффициента теплопроводности; размещение вне газовакуумной рабочей камеры пневматического устройства, создающего контролируемую сжимающую нагрузку на образцы для уменьшения тепловых сопротивлений и компенсации возможной усадки материала, значительно усложняет конструкцию устройства в связи с необходимостью передачи сжимающего усилия в камеру с обеспечением герметичного ввода силового штока.

Известно устройство [2, 6], реализующее нестационарные методы определения комплекса теплофизических характеристик материалов (коэффициента теплопроводности и теплоемкости) на основе решения обратных задач теплообмена в широком диапазоне температур по данным единичного эксперимента, устанавливаемое в газовакуумную рабочую камеру теплового стенда и состоящее из основания, на котором установлены водоохлаждаемые подвижная и неподвижная прижимные планки, снабженные электроизолирующими пластинами из текстолита и креплениями гибких токоподводов и выполняющие роль контактов плоского тонкого ленточного электрического нагревательного элемента прямоугольной формы из термостойкого металла или сплава, узлов натяжения, обеспечивающих контролируемое натяжение нагревательного элемента в продольном направлении, двух одинаковых плоских образцов исследуемого материала, которые установлены симметрично на верхней и нижней поверхностях нагревательного элемента вплотную к поверхности или с контролируемым зазором относительно поверхности нагревательного элемента, двух датчиков нестационарного теплового потока, установленных на обратных поверхностях образцов, управляющей термопары, установленной в центральной части нагревательного элемента, термопар, установленных на поверхности и внутри образцов в их центральной части (в точках измерений, соответствующих принятой схеме измерений для используемой постановки обратной задачи теплообмена), термопар, установленных в датчике нестационарного теплового потока, двух проводников, установленных на нагревательном элементе для измерения напряжения на границах рабочей зоны нагревательного элемента для определения плотности теплового потока на поверхности нагревательного элемента по его электрическим параметрам, защитных теплоизолирующих элементов боковых поверхностей образцов, защитных теплоизолирующих элементов обратных поверхностей образцов, нижнего и верхнего узлов подвеса для фиксации образцов в устройстве и их прижатия к нагревательному элементу.

Недостатками данного устройства являются: отсутствие возможности исследования образцов материалов с формой отличной от плоской пластины, необходимость водяного охлаждения прижимных планок нагревательного элемента при высоких температурах, что приводит к увеличению оттока тепла из рабочей зоны нагревательного элемента; значительные термические деформации нагревательного элемента в поперечном направлении, возникающие вблизи прижимных планок в процессе нагрева, что приводит к нарушению теплового контакта между образцами и нагревательным элементом в этой области; жесткая фиксация образцов в узлах подвеса, не позволяющая надежно регулировать усилие и равномерность прижатия образцов к поверхности нагревательного элемента и компенсировать возможную усадку материала образцов в процессе нагрева. Все это приводит к возможному искажению равномерного поля температуры в рабочей зоне нагревательного элемента и, как следствие, к уменьшению точности определения теплофизических характеристик исследуемого материала, безотносительно к типу материала

Наиболее близким по технической сущности к настоящему изобретению является устройство [7] для определения комплекса теплофизических характеристик материалов, реализующее нестационарные методы определения комплекса теплофизических характеристик материалов (коэффициента теплопроводности и теплоемкости) на основе решения обратных задач теплообмена в широком диапазоне температур по данным единичного эксперимента, устанавливаемое в газовакуумную рабочую камеру теплового стенда и включающее: основание, плоский тонкий ленточный электрический нагревательный элемент из термостойкого металла или сплава, установленные на основании и выполняющие роль электрических контактов нагревательного элемента подвижную и неподвижную прижимные планки с электроизолирующими пластинами и креплениями гибких токоподводов, два узла натяжения нагревательного элемента в продольном направлении, два одинаковых плоских образца исследуемого материала, установленных симметрично на верхней и нижней поверхностях нагревательного элемента вплотную к поверхности или с одинаковыми зазорами относительно поверхности нагревательного элемента, управляющую термопару на нагревательном элементе, термопары, установленные на поверхности и внутри образцов, защитные теплоизолирующие элементы обратных поверхностей образцов с установленными в них датчиками нестационарного теплового потока, термопары, установленные в датчиках нестационарного теплового потока, два проводника для измерения напряжения на границах рабочей зоны нагревательного элемента, защитные теплоизолирующие элементы боковых поверхностей образцов, нижний и верхний узлы подвеса образцов. Прижимные планки нагревательного элемента выполнены неохлаждаемыми, электроизолирующие пластины прижимных планок изготовлены из высокотемпературной керамики, нагревательный элемент имеет форму с трапециевидными уширениями на краях в области прижимных планок нагревательного элемента, узлы подвеса снабжены пружинными устройствами регулируемого прижатия образцов к нагревательному элементу.

Недостатками данного устройства являются: отсутствие возможности исследования образцов материалов с формой отличной от плоской пластины. Необходимость использования симметричной схемы нагрева двух одинаковых образцов для определения плотности теплового потока на нагреваемой поверхности образца.

Указанное устройство принято в качестве прототипа.

Техническим результатом предлагаемого изобретения является: обеспечение возможности определения комплекса теплофизических характеристик композиционных материалов с использованием экспериментальных образцов, имеющих полуцилиндрическую форму и моделирующих форму реальных элементов композиционных конструкций, например, передних кромок затуплений аэродинамических поверхностей летательных аппаратов, включая кромки воздухозаборных устройств, крыльев и других аэродинамических поверхностей; повышение точности моделирования равномерного температурного поля в центральной рабочей зоне нагревательного элемента устройства, обеспечивающее реализацию одномерной, в цилиндрической системе координат, модели нестационарного прогрева образцов, и как следствие повышение точности определения комплекса теплофизических характеристик исследуемого материала в условиях нестационарного нагрева с использованием методов обратных задач теплообмена в одномерных постановках [1, 3].

Заявленный технический результат достигается тем, что в известном устройстве для определения комплекса теплофизических характеристик композиционных материалов, включающем основание, на котором установлены подвижная и неподвижная прижимные планки, снабженные электроизолирующими пластинами и креплениями гибких токоподводов, и выполняющие роль электрических контактов тонкого ленточного электрического нагревательного элемента из термостойкого металла или сплава, два узла натяжения нагревательного элемента в продольном направлении, образец исследуемого материала, установленный на нагревательном элементе, управляющую термопару, установленную в центральной части нагревательного элемента, термопары, установленные на поверхности и внутри образца в его центральной части, теплоизолирующие элементы, установленные на поверхностях образца с установленными в них датчиками нестационарного теплового потока, термопары, установленные в датчиках нестационарного теплового потока, проводники, установленные на нагревательном элементе для измерения напряжения на границах рабочей зоны

нагревательного элемента, защитные теплоизолирующие элементы боковых поверхностей образца, нижний и верхний узлы подвеса образца, снабженные пружинными прижимными устройствами, согласно заявляемому изобретению образец исследуемого материала выполнен в виде полого полуцилиндра, нагревательный элемент выполнен в виде полуцилиндра, охватывающего внешнюю нагреваемую поверхность образца и имеющий увеличенную толщину на краях в зоне крепления в прижимных планках, внешняя поверхность нагревательного элемента снабжены защитным теплоизолирующим элементом с установленным в нем нестационарным датчиком теплового потока.

В частном случае образец исследуемого материала выполнен в виде многослойного полого полуцилиндра.

В частном случае образец исследуемого материала выполнен в виде сплошного полуцилиндра.

В частном случае образец исследуемого материала выполнен в виде сплошного многослойного полуцилиндра.

Технический результат достигается тем, что устройство для определения комплекса теплофизических характеристик композиционных материалов, схема которого приведена на фиг. 1-4, имеет электрический малоинерционный тонкий ленточный полуцилиндрический 7 нагревательный элемент, который повторяет форму нагреваемой поверхности образца исследуемого композиционного материала. Использование нагревательного элемента из тонкой (например, с толщиной 100 мкм) ленты термостойкого сплава позволяет обеспечить хороший тепловой контакт с поверхностью образца и реализовать нестационарный нагрев поверхности с

темпом до 100°С/с при различных законах изменения температуры и плотности теплового потока. Использование нагревательного элемента (фиг. 4) имеющего увеличенную (например, двойную) толщину в зонах 8 на краях в области крепления в прижимных планках устройства позволяет исключить его перегрев в этой области, а также существенно снизить термические деформации нагревательного элемента в поперечном направлении в процессе нагрева и, как следствие, значительно улучшить тепловой контакт между образцом и нагревательным элементом, что также способствует формированию равномерного температурного поля в рабочей зоне 19 нагревательного элемента. Установка датчика нестационарного теплового потока 15 обеспечивает определение теплового потока на внешней поверхности нагревательного элемента, значения которого используются при расчете плотности теплового потока на нагреваемой поверхности образца. Датчик нестационарного теплового потока 21 используется для определения теплового потока на внутренней поверхности образца. Предварительное равномерное, регулируемое сжатие экспериментальной сборки, включающей поз.26, 14, 15, 7, 11, 20, 21, 25 и 27 с использованием узлов подвеса 28 и 29 уменьшает термическое сопротивление и обеспечивает компенсацию возможной усадки материала образца и теплоизолирующих элементов по толщине в процессе нагрева. Проведенные экспериментальные исследования показали, что предлагаемые решения приводят к повышению точности моделирования равномерного температурного поля в рабочей зоне 19 нагревательного элемента устройства, что обеспечивает реализацию одномерной модели нестационарного прогрева исследуемого образца в цилиндрической системе координат и, как следствие, обеспечивает повышение точности определения комплекса теплофизических характеристик образцов исследуемых композиционных материалов в условиях нестационарного нагрева с использованием методов обратных задач теплообмена в одномерных постановках [1, 3].

Заявленное изобретение поясняется следующими фигурами:

На фиг. 1 изображен вид спереди предлагаемого устройства для определения комплекса теплофизических характеристик композиционных материалов на образцах, имеющих форму полого полуцилиндра. На фиг.2 изображен вид сбоку. На фиг. 3 изображен вид сверху (позиции: 11, 20, 21, 22, 25, и 27 условно сняты). На фиг. 4 изображен полуцилиндрический нагревательный элемент устройства. На фиг. 5 изображена схема нагрева многослойного полого полуцилиндра. На фиг. 6 изображена схема нагрева сплошного полуцилиндра. На фиг. 7 изображена схема нагрева сплошного многослойного полуцилиндра. На фиг. 8, для примера, представлена фотография полого полуцилиндра из композиционного материала углерод-углерод. На фиг. 9, для примера, представлена фотография образца в виде полого полуцилиндра с нанесенным электроизоляционным покрытием из гексагонального нитрида бора.

Устройство для определения комплекса теплофизических характеристик композиционных материалов (фиг. 1-4) состоит из: основания 1, на котором установлены подвижная 2 и неподвижная 3 прижимные планки, снабженные электроизолирующими пластинами 4 и 5 из высокотемпературной керамики и винтами 6 для крепления гибких токоподводов рабочей камеры испытательного стенда, и выполняющие роль электрических контактов полуцилиндрического тонкого ленточного малоинерционного электрического нагревательного элемента 7 из термостойкого металла (например, тантала при нагреве до температур 1650°С в вакууме или в среде инертных газов) или термостойкого сплава (например, термостойкой нержавеющей стали при нагреве до 1100°С на воздухе), имеющего форму с трапециевидными уширениями на краях и увеличенную (например, удвоенную) толщину в зонах 8 крепления нагревательного элемента в прижимных планках (фиг. 4); двух узлов натяжения 9 и 10, обеспечивающих контролируемое натяжение нагревательного элемента и компенсирующих его термические деформации в продольном направлении; образца исследуемого материала в форме полуцилиндра 11, установленного на полуцилиндрическом нагревательном элементе 7, который плотно охватывает нагреваемую поверхность образца, принимая форму этой поверхности; управляющей термопары 12, установленной в центральной части рабочей зоны полуцилиндрического нагревательного элемента, показания которой используется в качестве сигнала обратной связи в системе управления нагревом испытательного стенда; термопар 13, установленных на поверхностях и внутри образца в их центральной части (в точках измерений, количество и координаты которых соответствуют принятой схеме температурных измерений для используемой постановки обратной задачи теплообмена [1, 3]); защитного теплоизолирующего элемента 14, установленного на полуцилиндрическом нагревательном элементе, с установленным в нем нестационарным датчиком тепловых потоков 15; термопар 16, установленных в датчике тепловых потоков; проводников 17 и 18, установленных на нагревательном элементе с целью измерения напряжения на границах рабочей зоны 19 нагревательного элемента для определения плотности теплового потока на поверхности нагревательного элемента по его электрическим параметрам; полуцилиндрического теплоизолирующего элемента 20 с установленным в нем нестационарным датчиком теплового потока 21 и с установленными в датчике термопарами 22; двух боковых защитных теплоизолирующих элементов 23 и 24; теплоизоляционной пластина 25; нижней и верхней прижимных пластин 26 и 27; верхнего 28 и нижнего 29 узлов подвеса образца, обеспечивающих фиксацию образца в устройстве и оборудованных каждый четырьмя пружинными узлами регулируемого прижатия 30, обеспечивающих заданное, равномерное, регулируемое прижатие образца и теплоизолирующих элементов друг к другу и к поверхности нагревательного элемента для уменьшения термического сопротивления экспериментальной сборки и компенсации возможной усадки материала образца в процессе нагрева.

Все теплоизоляционные элементы, прижимные пластины и датчики теплового потока выполнены из одного и того же термостойкого керамического материала с низкой теплопроводностью. Термопары в нестационарных датчиках теплового потока установлены на их осях в точках измерений, количество и координаты которых соответствуют принятой схеме температурных измерений, соответствующей постановке граничной обратной задачи теплообмена [1, 3]. Все основные металлические элементы конструкции устройства изготовлены из жаростойкого сплава (например, термостойкой нержавеющей стали). В устройстве используются термопары различного типа, выбор которого зависит от уровня максимальных температур нагрева (например, малоинерционные микротермопары с диаметром проводов 100 мк и менее, типа Хромель-Алюмель, Вольфрам-Рений, и других). В случае исследований электропроводных материалов поверхность образца со стороны нагревательного элемента или внутренняя поверхность нагревательного элемента покрывается тонким слоем высокотемпературного электроизоляционного материала, например, гексагонального нитрида бора (фиг. 9).

Устройство работает следующим образом.

Собранное и подготовленное устройство устанавливается в газовакуумную рабочую камеру испытательного стенда [6]. Прижимные планки 2 и 3 нагревательного элемента с помощью винтов 6 подключаются к гибким токоподводам рабочей камеры. Управляющая термопара 12 подключается к системе управления нагревом испытательного стенда. Остальные термопары и проводники для измерения напряжения подключаются к измерительным линиям системы измерения испытательного стенда. Проводится вакуумирование рабочей камеры стенда или камера заполняется воздухом или рабочим газом. В соответствии с заданной программой изменения температуры нагревательного элемента (с использованием в качестве сигнала обратной связи показаний управляющей термопары 12) на нагревательный элемент 7 подается электропитание и производится нагрев полуцилиндрического образца 11 исследуемого материала. В процессе нагрева, с помощью приборов системы измерений испытательного стенда, с использованием термопар 13 проводятся измерения температур в образце, с использованием термопар 16 и 22 проводятся измерения температур в датчиках тепловых потоков 15 и 21, а также, с использованием проводников 17 и 18 проводятся измерения напряжения на границах рабочей зоны 19 полуцилиндрического нагревательного элемента 7. Кроме того проводится измерение силы тока в цепи нагревательного элемента. Результаты измерений фиксируются системой измерений испытательного стенда.

Измерения электрических параметров нагревательного элемента в дальнейшем используются для расчета по формулам плотности нестационарного теплового потока на поверхности нагревательного элемента. Результаты измерения температур в нестационарном датчике тепловых потоков 15 используются для определения плотности тепловых потоков на нагреваемой поверхности теплоизолирующего элемента 14 с использованием методов решения граничных обратных задач теплообмена [1]. Эти значения плотности тепловых потоков, совместно с результатами определения плотности тепловых потоков на поверхности нагревательного элемента в дальнейшем используются для расчета плотности тепловых потоков на нагреваемой поверхности полуцилиндрического образца. Результаты измерения температур в нестационарном датчике тепловых потоков 21 используются для определения плотности тепловых потоков на внутренней поверхности полуцилиндрического образца с использованием методов решения граничных обратных задач теплообмена [1]. Результаты измерения нестационарных температур в полуцилиндрическом образце исследуемого материала и результаты определения плотности тепловых потоков на границах образца в процессе последующей обработки используются для определения комплекса теплофизических характеристик с использованием методов коэффициентных обратных задач теплообмена [1, 3].

Предлагаемое устройство может применяться для определения комплекса теплофизических характеристик (коэффициента теплопроводности и теплоемкости) композиционных конструкционных и теплотехнических материалов на образцах полуцилиндрической формы, в том числе полых и сплошных образцах, а также на многослойных образцах (фиг. 1, 5-9) при различных законах изменения температуры и плотности теплового потока, соответствующих реальным условиям работы исследуемых материалов в широком диапазоне температур (в том числе экстремальных) и темпов нагрева по результатам единичного эксперимента при нестационарном нагреве характерном для конструкций аэрокосмической техники, ядерной энергетики и металлургии.

Перечень использованной литературы

1. Алифанов О.М Обратные задачи теплообмена. - М: Машиностроение, 1988, 280 с.

2. О.М. Alifanov, S.A. Budnik, A.V. Nenarokomov, V.V. Mikhaylov and V.M. Ydine, Identification of Thermal Properties of Materials with Applications for Spacecraft Structures. Inverse Problems in Science and Engineering, 2004, vol. 12, pp. 771-795.

3. Алифанов O.M., Артюхин E.A., Румянцев СВ. Экстремальные методы решения некорректных задач и их приложения к обратным задачам теплообмена. М.: Наука, 1988, 288 с.

4. Ceramic Matrix Composites. Fiber Reinforced Ceramics and their Applications. Edited by Walter Krenkel, WILEY-VCH Verlag GmbH & Co. KGaA, 2008, 418p.ISBN: 978-3-527-31361-7.

5. Харламов А.Г. Измерение теплопроводности твердых тел. М., Атомиздат, 1973,152 с.

6. Алифанов О.М., Будник С.А., Михайлов В.В., Ненарокомов А.В. Эксперментально-вычислительный комплекс для исследования теплофизических свойств теплотехнических материалов. Космонавтика и ракетостроение, 2006, т. 42, №1, с. 126-139.

7. Описание полезной модели к патенту RU 169620 "Устройство для определения комплекса теплофизических характеристик материалов", публ. 24.03.2017, Бюл. №9.

1. Устройство для определения комплекса теплофизических характеристик композиционных материалов, включающее: основание, на котором установлены подвижная и неподвижная прижимные планки, снабженные электроизолирующими пластинами и креплениями гибких токоподводов и выполняющие роль электрических контактов тонкого ленточного электрического нагревательного элемента из термостойкого металла или сплава, два узла натяжения нагревательного элемента в продольном направлении, образец исследуемого материала, установленный на нагревательном элементе, управляющую термопару, установленную в центральной части нагревательного элемента, термопары, установленные на поверхности и внутри образца в его центральной части, теплоизолирующий элемент, установленный на поверхности образца, датчики нестационарного теплового потока, термопары, установленные в датчиках нестационарного теплового потока, проводники, установленные на нагревательном элементе для измерения напряжения на границах рабочей зоны нагревательного элемента, защитные теплоизолирующие элементы боковых поверхностей образца, нижний и верхний узлы подвеса образца, снабженные пружинными прижимными устройствами, отличающееся тем, что образец исследуемого материала выполнен в виде полуцилиндра, нагревательный элемент выполнен в виде полуцилиндра, охватывающего внешнюю нагреваемую поверхность образца и имеющего увеличенную толщину на краях в зоне крепления в прижимных планках, внешняя поверхность нагревательного элемента и внутренняя поверхность образца снабжены защитными теплоизолирующими элементами с установленными в них нестационарными датчиками теплового потока.

2. Устройство по п. 1, отличающееся тем, что образец исследуемого материала выполнен в виде полого полуцилиндра.

3. Устройство по п. 2, отличающееся тем, что образец исследуемого материала выполнен в виде многослойного полого полуцилиндра.

4. Устройство по п. 1, отличающееся тем, что образец исследуемого материала выполнен в виде сплошного полуцилиндра.

5. Устройство по п. 4, отличающееся тем, что образец исследуемого материала выполнен в виде сплошного многослойного полуцилиндра.



 

Похожие патенты:

Изобретение относится к области пожарной безопасности, а именно к проведению огневых испытаний конструкций, используемых для строительства подземных тоннелей, и позволяет с минимальными затратами времени и материалов получать воспроизводимые и сравнимые результаты по определению пределов огнестойкости.

Изобретение относится к области измерительной техники, а именно к приборам для определения термической устойчивости жидких однофазных и двухфазных систем, в том числе гетерогенных. Техническим результатом изобретения является упрощение конструкции при сохранении точности измерений.

Группа изобретений относится к медицине и медицинской технике, а именно к способу и устройству для изотермической калориметрической спектроскопии биохимических компонентов живой ткани пациента. Способ изотермической калориметрической спектроскопии биохимических компонентов межклеточного и/или внутриклеточного вещества живой ткани пациента, выбранных из: воды, гиалуроновой кислоты, глюкозы, триглицеридов жирных кислот, заключается в том, что накладывают на поверхность кожи пациента с дозированным давлением по меньшей мере один тепло- и водонепроницаемый аппликатор, образующий закрытую систему в локальной области ткани под аппликатором.

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплоотдачи и коэффициента теплопроводности теплоизоляционных покрытий на основе полых микросфер. Предложенный способ определения коэффициента теплоотдачи и коэффициента теплопроводности теплоизоляционных покрытий на основе полых микросфер методом замера фактических теплопотерь в стационарных условиях заключается в использовании установки, состоящей из участка трубопровода с нанесенным теплоизоляционным покрытием на основе полых микросфер, подключенного к нагревательному элементу, измерении температуры теплоносителя на входе участка tвх, на выходе участка tвых, температуры поверхности участка трубопровода τ, расходе воды через испытуемый участок Gвд, определении фактических тепловых потерь Q, коэффициента теплоотдачи αтеп и коэффициента теплопроводности λтеп по расчетным формулам.

Изобретение относится к способу определения доли воды в пробе сырой нефти, включающий в себя взвешивание пробы сырой нефти. Пробу помещают в теплоизолированный сосуд, к ней подводят или отводят от нее определенное количество теплоты, изменяется вследствие этого температура пробы, измеряют при наступлении равновесного теплового режима начальную и конечную температуры пробы, и по указанному количеству теплоты, по величине начальной и конечной температур пробы, массе пробы, заданной теплоемкости теплоизолированного сосуда, известным удельным теплоемкостям воды и нефти определяют массовую долю воды по формуле (1), а затем, при необходимости, по заданным плотностям воды и нефти на основе полученной массовой доли воды определяют объемную долю воды: где Q - подведенное или отведенное количество теплоты, m - масса пробы, сн - удельная теплоемкость нефти, cв - удельная теплоемкость воды, Cк - теплоёмкость теплоизолированного сосуда, t1 и t2 - соответственно начальная и конечная температуры пробы после наступления равновесного теплового режима, μв - массовая доля воды в пробе сырой нефти.

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Суть изобретения состоит в том, что способ определения массы компонента газожидкостной среды характеризуется тем, что периодически создаются в поперечном сечении канала с газожидкостным потоком импульсные одинаковые порции количества тепла, и измеряется в равномерно размещенных по второму по потоку сечению точках поглощенное каждым компонентом в соответствии с его теплоемкостью количество теплоты в виде импульсов разной амплитуды, затем группируют полученные в каждой точке импульсы, одинаковые по амплитуде, и определяют по суммам количеств импульсов всех однотипных групп всех точек сечения доли массы каждого компонента потока.

Способ может быть использован в ядерной энергетике при анализе безопасности атомных электростанций с ядерными реакторами водо-водяного типа при тяжелой аварии с нарушением охлаждения и плавлением активной зоны. Согласно заявленному способу в экспериментальной установке формируют оксидно-металлическую ванну расплава прототипного кориума с поверхностным положением металлического расплава и с коркой кориума на поверхности металлического расплава.

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Предложен способ определения содержания компонента газожидкостной среды, характеризующийся тем, что периодически создают в поперечном сечении канала с газожидкостным потоком импульсные одинаковые порции количества тепла.

Изобретение относится к измерительной технике, а именно к адиабатической калориметрии, где определяются удельная теплоемкость и энтальпия различных материалов и изделий, и может быть использовано главным образом в метрологии. В предлагаемом адиабатическом калориметре, включающем в себя калориметрический сосуд с нагревателем, три адиабатические оболочки, окружающие сосуд и снабженные нагревателями и термопреобразователями, термопреобразователи совместно с нагревателем калориметрического сосуда подключены к блоку измерения и регулирования температуры.

Изобретение относится к области термометрии и может быть использовано для измерений тепловой мощности и количества теплоты, выделяемых жидкими, газообразными и многофазными теплоносителями в системах отопления. Предложено устройство, обеспечивающее прямые измерения тепловой мощности и энергии в независимых системах теплоснабжения без привлечения данных по расходу, температуре и свойствам теплоносителя.

Изобретение относится к области измерительной техники. Заявлена система (200) диагностики трубопровода, которая включает в себя капсулу (206) датчика, измерительную (228) цепь и контроллер (222). Капсула (206) датчика выполнена с возможностью соединения с внешней поверхностью трубопровода (100) и имела, по меньшей мере, один расположенный в ней температурочувствительный элемент. Измерительная (223) цепь соединена с капсулой (206) датчика и выполнена с возможностью измерения электрической характеристики, по меньшей мере, одного температурочувствительного элемента и обеспечения показания измерения. Контроллер (222) связан с измерительной (223) цепью и выполнен с возможностью получения эталонного измерения передатчика (502) и использования расчета теплопередачи (506) с эталонным измерением передатчика и указанного показания для генерирования оцененной температуры технологической среды. Контроллер (222) дополнительно выполнен с возможностью получения показания температуры технологической среды и обеспечения показания диагностики трубопровода (512) исходя из сравнения оцененной температуры технологической среды и полученного показания температуры технологической среды. Технический результат - создание системы диагностики трубопроводов, которая может функционировать во всех средах, независимо от акустики или вибрации, когда система процесса находится в режиме работы, и которая не порождает никаких потенциальных точек утечки. 13 з.п. ф-лы, 7 ил.
Наверх