Способ контроля достоверности навигационных измерений навигационной аппаратуры потребителя спутниковой радионавигационной системы воздушного судна

Использование: изобретение относится к области радиотехники и может быть использовано при создании и модернизации средств контроля достоверности навигационных измерений навигационной аппаратуры потребителя (НАП) спутниковой радионавигационной системы (СРНС) воздушного судна (ВС). Сущность: на каждый контрольный момент времени осуществляется проверка достоверности измерений барометрического высотомера путем сопоставления фактических измерений высоты полета ВС, формируемых барометрическим высотомером, с прогнозируемыми значениями данного параметра. Если на этом этапе формируется решение о достоверных измерениях барометрического высотомера, то решение о достоверности навигационных измерений НАП СРНС вырабатывается путем сопоставления фактических измерений высоты полета ВС, формируемых НАП СРНС с одной стороны и барометрическим высотомером с другой стороны, в противном случае решение о достоверности измерений НАП СРНС вырабатывается путем сопоставления фактических измерений высоты полета ВС, формируемых НАП СРНС, с прогнозируемыми значениями данного параметра. Это позволяет снизить влияние недостоверных измерений барометрического высотомера на контроль достоверности навигационных измерений НАП СРНС при изменении метеоусловий и, как следствие, повысить вероятность правильного контроля достоверности навигационных измерений НАП СРНС в целом. Технический результат: повышение вероятности правильного контроля достоверности навигационных измерений НАП СРНС. 1 ил.

 

Изобретение относится к области радиотехники и может быть использовано при создании и модернизации средств контроля достоверности навигационных измерений навигационной аппаратуры потребителя (НАП) спутниковой радионавигационной системы (СРНС) воздушного судна (ВС).

Наиболее близким по технической сущности к заявляемому способу (прототипом) является способ автоматического контроля целостности (см., например, ГЛОНАСС. Принципы построения и функционирования / Под. ред. А.И. Перова, В.Н. Харисова. Изд. 3-е, перераб. - М.: Радиотехника, 2005, 688 с. С.478), основанный на комплексировании НАП СРНС с барометрическим высотомером, позволяющий контролировать достоверность навигационных измерений НАП СРНС путем сопоставления измерений высоты полета ВС, формируемых НАП СРНС с одной стороны и барометрическим высотомером с другой стороны.

К недостаткам прототипа относится снижение вероятности правильного контроля достоверности навигационных измерений НАП СРНС при изменении метеоусловий. Это объясняется существенной зависимостью достоверности измерений барометрического высотомера от метеоусловий. Так, например, по причине недостоверных измерений высоты полета ВС барометрическим высотомером при изменении метеоусловий может вырабатываться ложное решение о недостоверности навигационных измерений НАП СРНС.

Техническим результатом изобретения является повышение вероятности правильного контроля достоверности навигационных измерений НАП СРНС.

Указанный результат достигается тем, что в известном способе оценивают скорость изменения высоты полета ВС по измерениям НАП СРНС на i-й контрольный момент времени, где , I - число контрольных моментов времени в течение полета ВС, следующих друг за другом через заданные интервалы времени, оценивают скорость изменения высоты полета ВС по измерениям барометрического высотомера на i-й момент времени, формируют прогнозное значение h1пр.(i+1) высоты полета ВС по измерениям НАП СРНС на (i+1)-й момент времени с использованием величины , формируют прогнозное значение h2пр.(i+1) высоты полета ВС по измерениям барометрического высотомера на (i+1)-й момент времени с использованием величины , оценивают абсолютное отклонение Δh2(i+1) измеренного барометрическим высотомером значения высоты полета ВС от прогнозного значения h2пр.(i+1) на (i+1)-й момент времени, сравнивают абсолютное отклонение Δh2(i+1) с заданным допустимым отклонением Δh2доп., если абсолютное отклонение Δh2(i+1) не превышает допустимого отклонения Δh2доп., то формируют решение χi+1=1 о том, что измерения барометрического высотомера достоверны на (i+1)-й момент времени, в противном случае формируют решение χi+1=0 о том, что измерения барометрического высотомера не достоверны на (i+1)-й момент времени, если χi+1=1 то оценивают абсолютное отклонение Δh12(i+1) измеренного НАП СРНС значения высоты полета ВС от измеренного барометрическим высотомером значения высоты полета ВС на (i+1)-й момент времени, сравнивают абсолютное отклонение Δh12(i+1) с заданным допустимым отклонением Δh12доп., если абсолютное отклонение Δh2(i+1) не превышает допустимого отклонения Δh12доп., то формируют решение qi+1=1 о том, что измерения НАП СРНС достоверны на (i+1)-й момент времени, в противном случае формируют решение qi+1=0 о том, что измерения НАП СРНС не достоверны на (i+1)-й момент времени, если χi+1=0, то оценивают абсолютное отклонение Δh1(i+1) измеренного НАП СРНС значения высоты полета ВС от прогнозного значения h1пр.(i+1) на (i+1)-й момент времени, сравнивают абсолютное отклонение Δh1(i+1) заданным допустимым отклонением Δh1доп., если абсолютное отклонение Δh1(i+1) не превышает допустимого отклонения Δh1доп., то формируют решение qi+1=1 о том, что измерения НАП СРНС достоверны на (i+1)-й момент времени, в противном случае формируют решение qi+1=0 о том, что измерения НАП СРНС не достоверны на (i+1)-й момент времени.

Сущность изобретения заключается в следующем. На каждый контрольный момент времени осуществляется проверка достоверности измерений барометрического высотомера путем сопоставления фактических измерений высоты полета ВС, формируемых барометрическим высотомером, с прогнозируемыми значениями данного параметра. Если на этом этапе формируется решение о достоверных измерениях барометрического высотомера, то решение о достоверности навигационных измерений НАП СРНС вырабатывается путем сопоставления фактических измерений высоты полета ВС, формируемых НАП СРНС с одной стороны и барометрическим высотомером с другой стороны, в противном случае решение о достоверности измерений НАП СРНС вырабатывается путем сопоставления фактических измерений высоты полета ВС, формируемых НАП СРНС, с прогнозируемыми значениями данного параметра. Это позволяет снизить влияние недостоверных измерений барометрического высотомера на контроль достоверности навигационных измерений НАП СРНС при изменении метеоусловий и, как следствие, повысить вероятность правильного контроля достоверности навигационных измерений НАП СРНС в целом.

Данный способ включает в себя следующие этапы:

1. Измерение значений высоты полета ВС с использованием НАП СРНС в течение полета ВС;

2. Измерение значений высоты полета ВС с использованием барометрического высотомера;

3. Оценка скорости изменения высоты полета ВС по измерениям НАП СРНС на i-й момент времени в соответствии с выражением

где , , τП - длительность полета ВС, Δt - заданный интервал времени между каждыми i-ми (i-1)-м контрольными моментами времени;

4. Оценка скорости изменения высоты полета ВС по измерениям барометрического высотомера на i-й момент времени в соответствии с выражением

5. Формирование прогнозного значения Δh1пр.(i+1) высоты полета ВС по измерениям НАП СРНС на (i+1)-й момент времени в соответствии с выражением

6. Формирование прогнозного значения Δh2пр.(i+1) высоты полета ВС по измерениям барометрического высотомера на (i+1)-й момент времени в соответствии с выражением

7. Оценка абсолютного отклонения Δh2(i+1) измеренного барометрическим высотомером значения высоты полета ВС от прогнозного значения на (i+1)-й момент времени в соответствии с выражением

8 Формирование решения χi+1 о достоверности измерений барометрического высотомера на (i+1)-й момент времени в соответствии с выражением

где χi+1∈[0,1] - параметр, характеризующий достоверность измерений барометрического высотомера на (i+1)-й момент времени; χi+1=0 - измерения барометрического высотомера недостоверны на (i+1)-й момент времени; χi+1=1 - измерения барометрического высотомера достоверны на (i+1)-й момент времени; Δh2доп. - заданное допустимое отклонение между измеренным барометрическим высотомером и прогнозным значениями высоты полета ВС;

9. Реализация процедур 9.1 и 9.2 в том случае, если на этапе 8 сформировано решение χi+1=1 о достоверности измерений барометрического высотомера, иначе реализация процедур 10.1 и 10.2;

9.1 Оценка абсолютного отклонения Δh12(i+1) измеренного НАП СРНС значения высоты полета ВС от измеренного барометрическим высотомером значения высоты полета ВС на (i+1)-й момент времени в соответствии с выражением

9.2 Формирование решения qi+1 о достоверности навигационных измерений НАП СРНС на (i+1)-й момент времени в соответствии с выражением

где qi+1∈[0,1] - параметр, характеризующий достоверность навигационных измерений НАП СРНС на (i+1)-й момент времени; qi+1=0 - измерения НАП СРНС недостоверны на (i+1)-й момент времени; qi+1=1 - измерения НАП СРНС достоверны на (i+1)-й момент времени; Δh12доп. - заданное допустимое отклонение между измерениями высоты полета ВС с использованием НАП СРНС и барометрического высотомера;

10. Реализация процедур 10.1 и 10.2 в том случае, если на этапе 8 сформировано решение χi+1=0 о недостоверности измерений барометрического высотомера;

10.1 Оценка абсолютного отклонения Δh1(i+1) измеренного НАП СРНС значения высоты полета ВС от прогнозного значения h1пр.(i+1) на (i+1)-й момент времени в соответствии с выражением

10.2 Формирование решения qi+1 о достоверности навигационных измерений НАП СРНС на (i+1)-й момент времени в соответствии с выражением

где Δh1доп. - заданное допустимое отклонение между измеренным НАП СРНС и прогнозным значениями высоты полета ВС.

Данный способ может быть реализован, например, с помощью системы, структурная схема которой приведена на фигуре, где обозначено: 1 - НАП СРНС; 2 - блок оценки скорости изменения высоты (БОСИВ); 3 - блок прогнозирования (БП); 4 - блок контроля достоверности измерений (БКДИ) НАП; 5 - устройство управления (УУ); 6 - БКДИ БВ; 7 - барометрический высотомер (БВ); 8 - БОСИВ; 9 - БП.

НАП СРНС 1 предназначена для формирования навигационных измерений, в том числе значений высоты полета ВС.БОСИВ 2 предназначен для оценки скорости изменения высоты полета ВС по измерениям НАП СРНС.БП 3 предназначен для формирования прогнозного значения h1пр.(i+1) высоты полета ВС по измерениям НАП СРНС. БКДИ НАП 4 предназначен для оценки абсолютных отклонений Δh1(i+1) и Δh12(i+1), а также для формирования решения qi+1 о достоверности навигационных измерений НАП СРНС.УУ 5 предназначено для управления совместной работой элементов системы. БКДИ БВ 6 предназначен для оценки абсолютного отклонения Δh2(i+1) и формирования решения χi+1 о достоверности измерений барометрического высотомера. БВ 7 предназначен для измерения значений высоты полета ВС.БОСИВ 8 предназначен для оценки скорости изменения высоты полета ВС по измерениям барометрического высотомера. БП 9 предназначен для формирования прогнозного значения h2пр.(i+1) высоты полета ВС по измерениям барометрического высотомера.

Система работает следующим образом. УУ 5 управляет совместной работой элементов системы. НАП СРНС 1 формирует навигационные измерения, в том числе значения высоты полета ВС в течение полета. БВ 7 измеряет значения высоты полета ВС в течение полета. Значения высоты полета ВС с выхода НАП СРНС 1 поступают на БОСИВ 2 и БКДИ НАП 4. Значения высоты полета ВС с выхода БВ 7 поступают на БОСИВ 8, БКДИ БВ 6 и БКДИ НАП 4. БОСИВ 2 оценивает скорость изменения высоты полета ВС по измерениям НАП СРНС в соответствии с выражением (1). Значения скорости изменения высоты полета ВС с выхода БОСИВ 2 поступают на БП 3. БП 3 формирует прогнозные значения h1пр.(i+1) высоты полета ВС по измерениям НАП СРНС в соответствии с выражением (3). Прогнозные значения h1пр.(i+1) высоты полета ВС с выхода БП 3 поступают на БКДИ НАП 4. БОСИВ 8 оценивает скорость изменения высоты полета ВС по измерениям барометрического высотомера в оответствии с выражением (2). Значения скорости изменения высоты полета ВС с выхода БОСИВ 8 поступают на БП 9. БП 9 формирует прогнозные значения h2пр.(i+1) высоты полета ВС по измерениям барометрического высотомера в соответствии с выражением (4). Прогнозные значения h2пр.(i+1) высоты полета ВС с выхода БП 9 поступают на БКДИ БВ 6. БКДИ БВ 6 оценивает абсолютное отклонение Δh2(i+1) в соответствии с выражением (5) и формирует решение χi+1 о достоверности измерений барометрического высотомера в соответствии с выражением (6). Решение χi+1 с выхода БКДИ БВ 6 поступает на БКДИ НАП 4. Если с выхода БКДИ БВ 6 на вход БКДИ НАП 4 поступает решение χi+1=1, то БКДИ НАП 4 оценивает абсолютное отклонение Δh12(i+1) в соответствии с выражением (7) и формирует решения qi+1 о достоверности навигационных измерений НАП СРНС в соответствии с выражением (8). Если с выхода БКДИ БВ 6 на вход БКДИ НАП 4 поступает решение χi+1=0, то БКДИ НАП 4 оценивает абсолютное отклонение Δh1(i+1) в соответствии с выражением (9) и формирует решение qi+1 о достоверности навигационных измерений НАП СРНС в соответствии с выражением (10).

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений не известен способ контроля достоверности навигационных измерений НАП СРНС ВС, сущность которого заключается в следующем. На каждый контрольный момент времени осуществляется проверка достоверности измерений барометрического высотомера путем сопоставления фактических измерений высоты полета ВС, формируемых барометрическим высотомером, с прогнозируемыми значениями данного параметра. Если на этом этапе формируется решение о достоверных измерениях барометрического высотомера, то решение о достоверности навигационных измерений НАП СРНС вырабатывается путем сопоставления фактических измерений высоты полета ВС, формируемых НАП СРНС с одной стороны и барометрическим высотомером с другой стороны, в противном случае решение о достоверности измерений НАП СРНС вырабатывается путем сопоставления фактических измерений высоты полета ВС, формируемых НАП СРНС, с прогнозируемыми значениями данного параметра.

Предлагаемое техническое решение имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что если на каждый контрольный момент времени осуществлять проверку достоверности измерений барометрического высотомера путем сопоставления фактических измерений высоты полета ВС, формируемых барометрическим высотомером, с прогнозируемыми значениями данного параметра, затем в случае формирования решения о достоверных измерениях барометрического высотомера, решение о достоверности навигационных измерений НАП СРНС вырабатывать путем сопоставления фактических измерений высоты полета ВС, формируемых НАП СРНС с одной стороны и барометрическим высотомером с другой стороны, в противном случае решение о достоверности измерений НАП СРНС вырабатывать путем сопоставления фактических измерений высоты полета ВС, формируемых НАП СРНС, с прогнозируемыми значениями данного параметра, то это приведет к повышению вероятности правильного контроля достоверности навигационных измерений НАП СРНС.

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы элементы, широко распространенные в области электронной и электротехники.

Способ контроля достоверности навигационных измерений, формируемых навигационной аппаратурой потребителя (НАП) спутниковой радионавигационной системы (СРНС) воздушного судна (ВС), основанный на комплексировании НАП СРНС с барометрическим высотомером, отличающийся тем, что оценивают скорость изменения высоты полета ВС по измерениям НАП СРНС на i-й контрольный момент времени, где , I - число контрольных моментов времени в течение полета ВС, следующих друг за другом через заданные интервалы времени, оценивают скорость изменения высоты полета ВС по измерениям барометрического высотомера на i-й момент времени, формируют прогнозное значение h1пр.(i+1) высоты полета ВС по измерениям НАП СРНС на (i+1)-й момент времени с использованием величины , формируют прогнозное значение h2пр.(i+1) высоты полета ВС по измерениям барометрического высотомера на (i+1)-й момент времени с использованием величины , оценивают абсолютное отклонение Δh2(i+1) измеренного барометрическим высотомером значения высоты полета ВС от прогнозного значения h2пр.(i+1) на (i+1)-й момент времени, сравнивают абсолютное отклонение Δh2(i+1) с заданным допустимым отклонением Δh2доп., если абсолютное отклонение Δh2(i+1) не превышает допустимого отклонения Δh2доп., то формируют решение χi+1=1 о том, что измерения барометрического высотомера достоверны на (i+1)-й момент времени, в противном случае формируют решение χi+1=0 о том, что измерения барометрического высотомера не достоверны на (i+1)-й момент времени, если χi+1=1, то оценивают абсолютное отклонение Δh12(i+1) измеренного НАП СРНС значения высоты полета ВС от измеренного барометрическим высотомером значения высоты полета ВС на (i+1)-й момент времени, сравнивают абсолютное отклонение Δh12(i+1) с заданным допустимым отклонением Δh12доп., если абсолютное отклонение Δh12(i+1) не превышает допустимого отклонения Δh12доп., то формируют решение qi+1=1 о том, что измерения НАП СРНС достоверны на (i+1)-й момент времени, в противном случае формируют решение qi+1=0 о том, что измерения НАП СРНС не достоверны на (i+1)-й момент времени, если χi+1=0, то оценивают абсолютное отклонение Δh1(i+1) измеренного НАП СРНС значения высоты полета ВС от прогнозного значения h1пр.(i+1) на (i+1)-й момент времени, сравнивают абсолютное отклонение Δh1(i+1) с заданным допустимым отклонением Δh1доп., если абсолютное отклонение Δh1(i+1) не превышает допустимого отклонения Δh1доп., то формируют решение qi+1=1 о том, что измерения НАП СРНС достоверны на (i+1)-й момент времени, в противном случае формируют решение qi+1=0 о том, что измерения НАП СРНС не достоверны на (i+1)-й момент времени.



 

Похожие патенты:

Изобретение относится к ремонту контактных линий электроснабжения. Переносная заземляющая штанга контактной сети переменного тока содержит ручку в виде трубы, состоящую из нижней изолирующей части и верхней токопроводящей части, к которой прикреплены крюк, усовик, фиксирующая пружина и заземляющий трос.

Изобретение относится к спутниковой навигации. Технический результат состоит в повышении точности позиционирования.

Изобретение может быть использовано в радиолокационных и радионавигационных системах для определения местоположения объектов. Техническим результатом изобретения является повышение точности определения пространственных координат цели и скорости их изменения.

Изобретение относится к области радиолокации и предназначено для определения местоположения радиолокационной станции (РЛС) секторного обзора. Техническим результатом изобретения является расширение функциональных возможностей путем обеспечения определения дальности до РЛС, имеющей диаграмму направленности антенны (ДНА), сканирующую в заданном секторе.

Изобретение относится к области радиотехники, в частности к устройствам имитации радиоэлектронной обстановки. Техническим результатом изобретения является возможность имитации радиоэлектронной обстановки для оценки точности определения местоположения источников радиоизлучения (ИРИ) радиотехническими средствами разностно-дальномерным способом.

Изобретение относится к радиолокационным и радионавигационным системам определения текущего местонахождения и угловых координат подвижных объектов. Техническим результатом изобретения является упрощение конструкции устройства.

Изобретение относится к радиотехнике и радиоэлектронике, предназначено для проведения сеанса связи на дальние расстояния без ретрансляторов и может быть использовано для создания новых телекоммуникационных систем и адаптивных систем связи. Технический результат состоит в обеспечении возможности проведения сеанса связи с высокоскоростной передачей информации.

Изобретение относится к спутниковым сетям связи. Техническим результатом является обеспечение возможности первоначального приема сигналов от множества спутников в расширенной зоне покрытия для выбора подходящего спутника.

Изобретение относится к области адаптивных систем и может быть использовано для адаптивной фильтрации стохастических сигналов и параметров состояния стохастических систем. Технический результат - обеспечение устойчивости и повышение точности калмановской фильтрации за счет адаптивного определения компонентов дисперсионной матрицы помех измерения в процессе текущего оценивания стохастических сигналов и параметров состояния стохастических систем на основе точных измерений, поступающих в нерегулярные (или случайные) моменты времени.

Заявляемое техническое решение относится к области автоматизированных систем, предназначенных для контроля жизненного цикла объекта и его инфраструктуры. Технический результат заключаются в сборе и анализе данных о жизненном цикле объекта законченного строительства или находящегося в стадии строительства и их инфраструктуры.

Изобретение относится к области радиолокации, конкретно к обработке радиолокационного сигнала в импульсно-доплеровских радиолокационных станциях (РЛС), и может быть использовано в системах обработки первичной радиолокационной информации импульсно-доплеровских РЛС различного назначения. Техническим результатом изобретения является обеспечение перераспределения мощности передатчика: уменьшение среднего энергетического потенциала активной фазированной антенной решетки (АФАР) в течение излучения пачки зондирующих импульсов при сохранении характеристик принятого для обработки сигнала либо уменьшение потерь на обработку сигнала при сохранении среднего энергетического потенциала АФАР. В заявленном способе в режиме передачи используют АФАР с каналами, включаемыми и отключаемыми посредством электронных ключей. Перед излучением пачки N зондирующих импульсов производят выбор оконной функции, обеспечивающей когерентное накопление энергии принятых сигналов. Для каждого зондирующего импульса в пачке оценивают значение энергетического потенциала АФАР, при котором амплитуда сигнала на входе АФАР в режиме приема будет пропорциональна соответствующему значению выбранной оконной функции. Для каждого зондирующего импульса в пачке устанавливают состояния электронных ключей АФАР в режиме передачи, при которых будет достигаться соответствующее значение энергетического потенциала АФАР при постоянном положении фазового центра включенных каналов. Далее излучают пачку N когерентных зондирующих импульсов с периодом следования Т. В промежутках между излучениями пачки зондирующих импульсов принимают сигналы, отраженные от объектов в зондируемой области пространства, всеми каналами АФАР в режиме приема. Усиливают принятые сигналы каналов и переносят их на промежуточную частоту с формированием квадратурных составляющих. Выполняют дискретизацию квадратурных составляющих сигналов каналов, записывают N последовательностей квадратурных составляющих сигналов каналов по Nt отсчетам. Складывают соответствующие отсчеты N последовательностей квадратурных составляющих сигналов всех каналов АФАР с одинаковыми весами, выполняют согласованную фильтрацию суммарной последовательности из Nt отсчетов, обнаруживают объекты с определением дальности и радиальной скорости. 7 ил., 2 табл.
Наверх