Способ контроля герметичности корпуса космического аппарата

Изобретение относится к области испытаний ракетно-космической техники, а более конкретно к контролю герметичности корпуса космического аппарата. Способ контроля герметичности корпуса космического аппарата, при котором создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды. В качестве чувствительной среды применяют индикаторные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи. Измерение скоростей этих частиц производят PIV-методом (Particle Image Velocimetry). Местоположение течи находят по минимальному значению поперечной по отношению к оси симметрии течи составляющей скорости индикаторной частицы. Величину течи определяют автоматически расчетным методом по перепаду поперечной составляющей скорости и асимптотическому значению продольной составляющей скорости индикаторной частицы. Достигается сокращение времени поиска течи. 1 ил.

 

Изобретение относится к области испытаний ракетно-космической техники и может быть использовано для контроля герметичности корпуса космического аппарата (КА) и поиска места течи из отсеков КА в условиях орбитального полета или в процессе вакуумных испытаний.

Известен способ обнаружения на орбите негерметичности корпуса космического аппарата, заключающийся в том, что изолируют отдельные участки корпуса КА, формируя вспомогательные контрольные полости с образованием в каждой из них проходного сечения, перекрываемого ворсинками волокнистого чувствительного элемента, создают давление воздуха внутри корпуса и о наличии негерметичности судят по движению ворсинок, ведя киносъемку процесса (см. патент РФ №2152015, 27.06.2000 г., МПК G01M 3/04).

Недостатками данного способа являются: длительность поиска места негерметичности, так как требуется определенное время для процесса крепления к корпусу КА заглушек, при помощи которых образуют контрольные полости, и для заполнения контрольных полостей выходящим из корпуса КА воздухом, а также относительно невысокая точность обнаружения места течи.

Известен способ контроля герметичности корпуса КА, при котором создают давление воздуха внутри КА и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, осуществляя обдув частей корпуса КА пробным мелкодисперсным веществом, а обнаружение локальной негерметичности производят посредством визуализации изменения линий тока пробного мелкодисперсного вещества под воздействием выходящего из корпуса воздуха, проводя видеосъемку процесса (см. патент РФ №2321835, 01.11.2006 г., МПК G01M 3/00).

Основными недостатками указанного способа являются необходимость дополнительного оборудования для видеосъемки, а также возникновение облака дисперсных частиц вокруг КА в условиях орбитального полета.

Наиболее близким по технической сути к предлагаемому изобретению является способ контроля герметичности корпуса космического аппарата, заключающийся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве которой применяют индикаторные дискретные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, производят измерение отклонения положения мест ударов этих частиц о чувствительный экран-мишень, устанавливаемый под заданным углом для отражения их в ловушку, и регулируют чувствительность измерений изменением начальных скоростей индикаторных дискретных частиц и расстояния между источником, запускающим индикаторные дискретные частицы, и экраном-мишенью, (см. патент РФ №2502972, 27.03.2012 г., МПК G01M 3/00).

Основными недостатками указанного способа являются применение дополнительного устройства - экрана-мишени, а также необходимость точного определения массогабаритных параметров запускаемых индикаторных частиц и их начальной скорости.

Задачей предлагаемого изобретения является создание способа контроля герметичности корпуса космического аппарата, позволяющего сократить время поиска места течи, при котором техническим результатом будет являться отсутствие необходимости точного определения массогабаритных параметров запускаемых индикаторных частиц и их начальной скорости.

Этот технический результат в способе контроля герметичности корпуса космического аппарата, заключающемся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве чувствительной среды применяют индикаторные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, достигается тем, что производят измерение скоростей этих частиц PIV-методом (Particle Image Velocimetry), местоположение течи находят по минимальному значению поперечной по отношению к оси симметрии течи составляющей скорости индикаторной частицы, величину течи определяют автоматически расчетным методом по перепаду поперечной составляющей скорости и асимптотическому значению продольной составляющей скорости индикаторной частицы.

Сущность предлагаемого способа поясняется на фиг. 1.

В безразмерном виде представлены фазовые портреты продольной U (поз. 1, фиг. 1) и поперечной V (поз. 2, фиг. 1) составляющих вектора скорости V индикаторной частицы при прохождении над течью. Ось у направлена параллельно к исследуемой поверхности, х0 - начальная координата запуска индикаторной частицы, начало координат у/х0=0 помещено в центр течи, V0 - начальная скорость индикаторной частицы. При прохождении индикаторной частицы над течью продольная составляющая скорости U (поз. 1, фиг. 1) монотонно возрастает и стремится к асимптотическому значению, зависящему от величины течи. Поперечная по отношению к оси симметрии течи проекция скорости V (поз. 2, фиг. 1) вначале убывает, а затем возрастает до исходного значения, минимальное значение V наблюдается при у=0, что соответствует местоположению течи.

Чувствительность измерений в предложенном способе определяется подбором массо-габаритных и скоростных параметров индикаторных частиц, а также точностью измерения траекторий и скоростей этих частиц.

Предложенный способ позволяет после первичного обнаружения факта локальной негерметичности с помощью нескольких уточняющих замеров определить место и расход газа из течи.

Данный способ позволяет упростить диагностику негерметичности корпуса КА, повысить ее точность и сократить время поиска места течи.

Наиболее эффективно можно применять предложенный способ на объектах с преобладанием плоских и цилиндрических поверхностей.

Способ контроля герметичности корпуса космического аппарата, заключающийся в том, что создают давление воздуха внутри корпуса космического аппарата и вывод о наличии локальной негерметичности делают с использованием чувствительной среды, в качестве чувствительной среды применяют индикаторные частицы, запускаемые с заданным шагом вдоль поверхности его корпуса и меняющие свои траектории под воздействием газового потока из течи, отличающийся тем, что производят измерение скоростей этих частиц PIV-методом (Particle Image Velocimetry), местоположение течи находят по минимальному значению поперечной по отношению к оси симметрии течи составляющей скорости индикаторной частицы, величину течи определяют автоматически расчетным методом по перепаду поперечной составляющей скорости и асимптотическому значению продольной составляющей скорости индикаторной частицы.



 

Похожие патенты:

Группа изобретений относится к области испытательной техники и может быть использована при гидравлических испытаниях насосно-компрессорных (НКТ) и обсадных труб, применяемых в нефтяной и газовой промышленности. В корпус (1) герметизирующего узла с отверстиями (2, 3) и обратным клапаном (4) устанавливают упор (5) для трубы (14), затем плотно прижимают манжету (6) к упору (5).

Изобретение относится к системе обнаружения утечки текучей среды для обнаружения утечки текучей среды в строениях. Система обнаружения утечки текучей среды, содержащая: множество датчиков, предусмотренных в строении, которые соответственно обнаруживают значения целевых величин обнаружения в позициях их установки; устройство обнаружения утечки текучей среды, которое обнаруживает утечку текучей среды в строении посредством алгоритма оценки состояния утечки, используемого для оценки состояния утечки текучей среды в строении, на основе значений целевых величин обнаружения, обнаруженных посредством множества датчиков; и устройство обучения, которое обучает алгоритм оценки состояния утечки, устройство обнаружения утечки текучей среды содержит: блок получения фактического измеренного значения, который получает значения целевых величин обнаружения, обнаруженные посредством множества датчиков; и блок оценки состояния утечки, который оценивает состояние утечки текучей среды в строении посредством алгоритма оценки состояния утечки на основе распределений значений целевых величин обнаружения, полученных посредством блока получения фактического измеренного значения, устройство обучения содержит: блок обучения, который обучает алгоритм оценки состояния утечки посредством машинного обучения, используя, в качестве обучающих данных, значения целевых величин обнаружения, обнаруженные соответственно посредством множества датчиков во время утечки текучей среды из предварительно определенной позиции строения; блок хранения структурных данных, который хранит структурные данные строения; и симулятор трехмерного потока, который моделирует поведение текучей среды в строении во время утечки текучей среды из предварительно определенной позиции строения, выполняя моделирование трехмерного потока на основе структурных данных строения, хранящихся в блоке хранения структурных данных, при этом блок обучения обучает алгоритм оценки состояния утечки посредством машинного обучения, дополнительно используя, в качестве обучающих данных, значения целевых величин обнаружения, вычисленные на основе результата моделирования трехмерного потока, выполненного посредством симулятора трехмерного потока.

Группа изобретений относится к способу и устройству для контроля технического состояния запорно-регулирующей арматуры и может быть использована для мониторинга состояния запорно-регулирующей арматуры без выведения ее из эксплуатации. Способ определения уровня утечки газа через негерметичный затвор закрытого шарового крана запорно-регулирующей арматуры трубопровода включает измерение давления в полости шарового крана манометром.

Изобретение относится к способу и системе проверки трубопровода для транспортировки флюида. Способ проверки трубопровода для транспортировки флюида, включающий: генерирование импульса давления с профилем давления в трубопроводе путем закрывания задвижки, соединенной с трубопроводом; регистрацию профиля давления с помощью датчика, соединенного с трубопроводом; вычисление первой производной и второй производной указанного профиля давления; идентификацию момента начала закрывания задвижки, момента окончания закрывания задвижки и начального момента закрывания задвижки, в который задвижка закрыта достаточно для генерирования акустического импульса, на основании первой производной и второй производной профиля давления; и определение параметра трубопровода, характеризующего трубопровод, с помощью указанных момента начала закрывания задвижки, момента окончания закрывания задвижки и начального момента закрывания задвижки.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для выявления развивающихся дефектов в уплотнительных элементах (5) и запорных органах (6) шаровых кранов (1). Сущность: переводят шаровой кран (1) в положение “закрыто”.

Настоящее изобретение относится к способу многопозиционного определения положения утечек на основе улучшенной вариационной модовой декомпозиции (ВМД), включающему следующие этапы, на которых: собирают исходный сигнал об утечке в трубопроводе; выполняют декомпозицию локального среднего по множеству (ДЛСМ) на исходном сигнале об утечке с получением нескольких компонентов функции-произведения (ФП); вычисляют коэффициент корреляции каждого компонента ФП, выбирают необходимый компонент ФП согласно коэффициенту корреляции, выполняют восстановление сигнала согласно выбранному компоненту ФП и определяют значения k ВМД; выполняют ВМД на восстановленном сигнале с получением нескольких компонентов внутренней модовой функции (ВМФ), вычисляют значение многомасштабной энтропии (ММЭ) каждого компонента ВМФ и выбирают компонент ВМФ согласно значению ММЭ каждого компонента ВМФ; и выполняют восстановление сигнала на выбранном компоненте ВМФ и завершают определение положения утечки в трубопроводе путем выполнения вычисления для определения положения взаимной корреляцией на каждом сигнале об утечке после слепого разделения источников.

Изобретение относится к зонду газоанализатора. Зонд газоанализатора выполнен с возможностью отбирать газ, и выполнен с возможностью подключения к газоанализатору, содержит наконечник газоанализатора, имеющий впускное отверстие, так что газ отбирается через впускное отверстие вдоль серединного перпендикуляра впускного отверстия, при этом наконечник газоанализатора содержит множество удлиненных газонаправляющих элементов, расположенных кольцеобразно вокруг впускного отверстия и параллельно серединному перпендикуляру, и выступают дистально за пределы впускного отверстия, тем самым образуя барьер для поперечных потоков газа.

Изобретение относится к водоснабжению и решает задачу по определению длины компактной части струи воды из пожарного крана в зданиях. Измерительное устройство для определения длины компактной части струи воды из пожарного крана содержит манометр, дополнительно содержит две головки соединительные пожарные напорные цапковые, последовательно установленные посредством резьбового соединения угольник, фильтр грубой очистки, водомер, тройник, при этом тройник имеет резьбовое соединение через футорку с манометром, между водомером и тройником установлена регулируемая тренога, одна головка соединительная пожарная напорная цапковая имеет резьбовое соединение с угольником, другая головка соединительная пожарная напорная цапковая имеет резьбовое соединение с тройником.

Изобретение относится к экспериментальной технике и может быть использовано для определения инерционных, диссипативных и упругих характеристик технических объектов с подвижными подпружиненными элементами, в качестве примеров которых можно рассматривать предохранительные или регулировочные клапаны пневмо- и гидромагистралей.
Изобретение относится к системам контроля герметичности гидроизоляционного слоя кровли. Сущность: система включает сетку из измерительного сенсорного кабеля с датчиками, расположенную на поверхности гидроизоляционного слоя.

Изобретение относится к управлению движением космического аппарата (КА) с электроракетным двигателем коррекции (ЭРДК), включающему оперативное уточнение тяги ЭРДК для формирования долговременных планов коррекции орбиты КА. Согласно способу, в полете к КА прикладывают проверочные и корректирующие воздействия, измеряют температуру рабочего тела на выходе из ускоряющего канала ЭРДК, усредняют полученные значения на всем интервале измерения.
Наверх