Способ диагностики элементов механических трансмиссий

Изобретение относится к методам диагностики технического состояния элементов механических трансмиссий в эксплуатации. Сущность способа заключается в контроле величины и скорости увеличения диагностической температуры контрольных точек для диагностики при испытаниях. Путем создания трехмерной модели элемента трансмиссии, приложения к ней температурных нагрузок в зоне трения и от смежных тепловыделяющих узлов, разбиения трехмерной модели на сетку конечных элементов производят расчет и получают значение диагностической температуры в зоне, предназначенной для диагностирования. Затем рассчитывают значение коэффициента пропорциональности конечно-элементной модели путем деления диагностической температуры на температуру в зоне трения. В процессе эксплуатации производят непрерывный или периодический контроль диагностической температуры, делят эту величину на значение коэффициента пропорциональности конечно-элементной модели и получают величину температуры в зоне трения во время эксплуатации и сравнивают ее с предельно допустимой температурой. Технический результат заключается в повышении достоверности и снижении трудоемкости технического диагностирования.

 

Изобретение относится к методам диагностики технического состояния элементов механических трансмиссий в эксплуатации.

Известен способ определения температуры, как показателя технического состояния подшипникового узла, на основе системы для считывания состояния компонента ходовой части транспортного средства [1], которая включает в себя датчик, содержащий матрицу инфракрасных считывающих элементов направленных на зону элемента подшипниковых узлов. Недостатком данного способа является невозможность контроля нескольких параметров: температуры и скорости ее роста.

Известен способ, заключающийся в контроле температуры подшипниковых узлов с использованием термоиндикаторных наклеек, закрепленных не только на поверхностях подшипниковых узлов, но и на поверхностях агрегатов, смежных с диагностируемыми [2]. Недостатком данного способа является невозможность контроля предельно допустимой температуры непосредственно в зоне трения и невозможность контроля скорости увеличения температуры, что снижает достоверность диагностирования.

Известен способ контроля технического состояния механических редукторов на основании измерения температуры на поверхности в некоторых контрольных точках. При этом решение о техническом состоянии принимают с учетом результатов предварительных испытаний, а диагностическим параметром является предельно допустимая температура на поверхности редуктора [3].

Недостаток способа заключается в невозможности контроля температуры непосредственно в зоне трения и, как следствие, в необходимости проведения ресурсных испытаний для определения предельно допустимых величин температуры и скорости увеличения температуры, что также снижает достоверность диагностирования и увеличивает ее трудоемкость.

Цель изобретения - повышение достоверности и снижение трудоемкости диагностирования элементов механических трансмиссий.

Сущность предлагаемого способа диагностики элементов механических трансмиссий заключается в определении температуры в зоне трения на основе диагностической температуры, измеренной в зоне, предназначенной для диагностирования и коэффициента пропорциональности конечно-элементной модели с последующим сравнением величины температуры в зоне трения с предельно допустимой температурой.

При этом с помощью специализированного программного обеспечения создают трехмерную модель элемента трансмиссии, тепловыделяющие поверхности, находящиеся в зоне трения, нагружают температурой, добавляют к трехмерной модели температурные нагрузки от смежных тепловыделяющих узлов, разбивают трехмерную модель на сетку конечных элементов. После этого проводят расчет и получают значение диагностической температуры в зоне, предназначенной для диагностирования, затем рассчитывают значение коэффициента пропорциональности конечно-элементной модели путем деления диагностической температуры на температуру в зоне трения.

В процессе эксплуатации производят непрерывный или периодический контроль диагностической температуры, делят эту величину на значение коэффициента пропорциональности конечно-элементной модели и получают величину температуры в зоне трения. Затем сравнивают значение температуры в зоне трения с предельно-допустимой температурой и делают заключение о техническом состоянии диагностируемого элемента.

Технический эффект от применения заключается в повышении достоверности и снижении трудоемкости технического диагностирования, что позволит оперативно выявлять элементы механических трансмиссий, нуждающихся в ремонтно-обслуживающих воздействиях.

Источники информации

1. RU 2393441 С2, G01J 5/00 (2006.01), 27.06.2010. Определение температуры подшипников колес поездов.

2. RU 2716721 C1, F16D 3/16 (2006.01), F16C 11/06 (2006.01), G01M 13/04 (2006.01), 16.03.2020. Способ диагностирования подшипниковых узлов карданных шарниров.

3. RU 2043614 C1, G01M 13/02 (1995.01), 17.11.1993. Способ тепловой диагностики механических редукторов.

Способ диагностики элементов механических трансмиссий, заключающийся в контроле величины и скорости увеличения диагностической температуры, определении контрольных точек для диагностики при испытаниях, отличающийся тем, что создают трехмерную модель элемента трансмиссии, прикладывают к ней температурные нагрузки в зоне трения и от смежных тепловыделяющих узлов, разбивают трехмерную модель на сетку конечных элементов, проводят расчет и получают значение диагностической температуры в зоне, предназначенной для диагностирования, затем рассчитывают значение коэффициента пропорциональности конечно-элементной модели путем деления диагностической температуры на температуру в зоне трения, в процессе эксплуатации производят непрерывный или периодический контроль диагностической температуры, делят эту величину на значение коэффициента пропорциональности конечно-элементной модели и получают величину температуры в зоне трения во время эксплуатации и сравнивают ее с предельно допустимой температурой.



 

Похожие патенты:

Изобретение относится к стендам для испытаний гидроагрегатов. Стенд содержит гидросистему в виде емкости с рабочей жидкостью и насосом, датчики крутящего момента, датчики угловой скорости, датчик давления, приводной электродвигатель, подключенные к управляющему блоку.

Изобретение может быть использовано при осмотре состояния узлов двигателя транспортного средства с поперечным расположением дизельного двигателя и приводом на передние колеса. Способ визуальной проверки состояния зубчатого ремня газораспределительного механизма (ГРМ) транспортного средства (5) заключается в открывании капота (6) моторного отсека, снятии защитной крышки ремня (1) ГРМ, проворачивании коленчатого вала (2) двигателя (4) и наружного визуального осмотра состояния ремня (1) ГРМ.

Изобретение относится к области испытательного оборудования, используемого при производстве летательных аппаратов. Стенд для испытаний невращающихся элементов автомата перекоса вертолета содержит раму (1) с закрепленными на ней нагружающими устройствами, а также средства измерения.

Изобретение относится к испытательной технике и может быть использовано для испытаний рулевых машинок с имитацией эксплуатационных нагрузок. Стенд содержит стол, систему нагружения, жестко установленную на столе, узлы крепления рулевой машины.

Изобретение относится к нефтегазодобывающей отрасли и предназначено для контроля натяжения ремней привода скважинных штанговых насосов. Заявлено устройство для проверки натяжения приводных ремней, содержащее корпус, шток, установленный в корпусе, нагрузочную пружину, две шкалы, нанесенные на шток.

Изобретение может быть использовано при диагностике дефектов шестерён редуктора газотурбинного двигателя. Способ диагностики дефектов зубьев зубчатых колёс редуктора газотурбинного двигателя заключается в том, что снимают сигналы вращения входного и выходного валов диагностируемой передачи и по разнице исследуемых параметров определяют величину дефекта.

Изобретение относится к испытаниям в машиностроении. Сущность: стенд для испытания электроприводов содержит нагрузочный привод, систему автоматического управления, нагрузочный асинхронный электродвигатель.

Изобретение относится к области технической акустики, в частности к виброакустическим исследованиям транспортных средств, оборудованных трансмиссией с механическим приводом фрикционного сцепления. При реализации способа исследуемое транспортное средство устанавливают на беговые барабаны динамометрического стенда, расположенного в акустической полубезэховой камере.

Изобретение относится к машиностроительной отрасли промышленности, преимущественно к редукторостроению в различных областях техники. Гидравлический моментный нагружатель содержит цилиндропоршневую пару, цилиндр которой укреплен на первом из нагружаемых валов и имеет на своей внутренней поверхности направляющие, исключающие возможность проворачивания поршня, размещенного внутри цилиндра и образующего в цилиндре надпоршневую полость, соединенную с трубопроводом гидравлической среды.

Изобретение относится к области машиностроения, в частности к конструкции машин трения, моделирующих трибологические процессы в парах трения качения «цилиндр-цилиндр», и предназначено для определения зависимости контактной усталости цилиндрических поверхностей от угла перекоса между их осями. Стенд представляет собой фрикционную передачу, приводящуюся во вращение с помощью электродвигателя, содержит опорную раму с установленными на ней сварными нижним и верхним полукорпусами, размещенные в этих полукорпусах нижние и верхние опоры с установленными в них верхним и нижним валами.

Изобретение относится к диагностике автотранспорта. В способе дистанционной автоматизированной диагностики технического состояния коробок переключения передач военной автомобильной техники снимают виброакустическим датчиком значений средней величины виброускорения с корпуса коробки передач, определяют значения крест-фактора путем обработки полученных спектрограмм вибросигнала и вычислением средней амплитуды огибающей сигнала виброускорения, анализируют результаты статистической обработки полученных данных о текущем значении крест-фактора основных передач сопоставлением текущих значений крест-фактора со стандартными значениями, полученными экспериментальным путем, заложенными в базу хранения. Выводят на дисплей заключение о техническом состоянии коробки передач и трансмиссионного масла с последующей отправкой этих данных посредством GSM-модуля на электронные серверы воинской части и завода-изготовителя. Диагностика производится в режиме реального времени. 4 ил.
Наверх