Сварочная проволока с высоким содержанием азота

Изобретение может быть использовано для ручной сварки в среде защитных газов деталей и конструкций из немагнитных высокопрочных аустенитных сталей с высокими концентрациями азота, например в нефтегазовой, судостроительной или машиностроительной промышленности. Сварочная проволока содержит компоненты в следующем соотношении, мас.%: углерод 0,04-0,08, кремний не более 1,0, марганец 14,0-16,0, хром 19,0-23,0, никель 6,0-9,0, молибден 0,5-1,5, ванадий 0,10-0,50, азот 0,45-0,65, церий 0,05-0,2, лантан 0,03-0,1, сера 0,005-0,010, фосфор 0,010-0,015, железо - остальное, при этом суммарное содержание церия и лантана не должно превышать 0,25 мас.%. Техническим результатом изобретения является получение немагнитного металла шва и повышение механических и коррозионных свойств сварного соединения. 3 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к сварочным материалам, а именно к сварочным проволокам, и касается состава сварочной проволоки для сварки аустенитных сталей с высоким содержанием азота, эксплуатируемых в нефтегазовой, судостроительной или машиностроительной промышленности.

В настоящее время проведено большое количество исследований, направленных на разработку и изучение новых марок аустенитных высокопрочных коррозионностойких сталей с высокими концентрациями азота. Использование в промышленности данных сталей позволяет снизить металлоемкость конструкций и увеличить срок их эксплуатации.

Благодаря высокому уровню свойств аустенитные азотсодержащие стали разработаны для изготовления трубопроводной нефтегазовой арматуры, корпусов судов, судостроительной арматуры, танков газовозов и т.д. Независимо от условий эксплуатации изделий, полученных из высокопрочных азотсодержащих сталей, к ним предъявляются высокие требования по уровню механических свойств, коррозионной стойкости и способности сопротивляться статическим, циклическим и динамическим нагрузкам. При этом большее внимание уделяется сварным узлам, представляющим слабое место во всей конструкции.

Получение прочных немагнитных коррозионностойких сварных соединений напрямую связано с материалом сварочной проволоки, обеспечивающим полный комплекс требуемых характеристик.

Для сварки аустенитных сталей с высоким содержанием азота (более 0,5% масс.) сварочные проволоки, содержащие более 0,37% масс, азота, разработаны не были.

Известна сварочная проволока для сварки и наплавки сталей, содержащая следующие легирующие элементы, мас. %: углерод 0,012-0,02; кремний 0,40-0,65; марганец 0,90-2,0; хром 23,0-25,0; никель 12,0-14,0; сера не более 0,01; фосфор не более 0,015; медь не более 0,1; олово не более 0,005; сурьма не более 0,005; кобальт не более 0,05; азот не более 0,05; железо - остальное. (RU 2443529, В23К 35/30, С22С 38/60, С22С 38/58, 27.02.2012) Данная сварочная проволока обеспечивает получение двухфазной аустенито-ферритной структуры металла сварного шва с содержанием ферритной фазы 5-10%, что снижает возникновение горячих трещин при сварке. Существенным недостатком металла шва, полученного с применением данной сварочной проволоки и содержащим феррит, является снижение механических свойств и коррозионной стойкости. К тому же, использование данной сварочной проволоки исключает возможность получения немагнитного сварного соединения.

Известен состав немагнитной сварочной проволоки для механизированной сварки, мас. %: углерод 0,04-0,08, кремний 0,6-0,9, марганец 3,5-4,0, хром 19,0-21,0, никель 15,0-17,0, молибден 2,4-2,8, ванадий 0,01-0,03, азот 0,15-0,25, серу 0,005-0,010, фосфор 0,010-0,015 (RU 2437746, В23К 35/30, С22С 38/58, 05.04.2019). Сварочная проволока обладает аустенитной структурой и подходит для сварки корпусных конструкций из немагнитной высокопрочной азотсодержащей стали. Недостатком известной сварочной проволоки является достаточно высокое содержание легирующих элементов, снижающих растворимость азота. Поэтому при сварке сталей с содержанием азота 0,5-0,6% мас. с использованием данной сварочной проволоки, существует высокая вероятность возникновения газовых пор в зоне сплавления за счет неусваиваемого азота, содержащегося в основном металле.

Наиболее близкой по применению и по содержанию азота является сверхвысокопрочная сварочная проволока, содержащая мас. %: углерод 0,05-0,1, кремний 0,50-0,90, марганец 4,0-6,0, хром 16,0-19,0, никель 19,0-22,0, молибден 5,0-6,5, азот 0,25-0,35, ванадий 0,15-0,30 сера ≤0,010, фосфор ≤0,015, железо остальное (CN 102962602 А, 13.03.2013). Данная сварочная проволока является аустенитной и предназначена для сварки немагнитных нержавеющих сталей. Благодаря высокому содержанию молибдена в составе сварочной проволоки сварные соединения, полученные с ее использованием, будут иметь высокую коррозионную стойкость. Недостатком данной сварочной проволоки, как показали термодинамические расчеты растворимости азота с использованием формулы (1), является достаточно низкая растворимость азота - 0,25 мас. % в металле указанной сварочной проволоки.

При расчетах принимали во внимание верхние значения концентрации элементов, способствующих повышению растворимости азота (марганец - 6,0%, хром - 19,0%, молибден - 6,5%), ванадий - 0,30%) и нижние значения концентрации элементов, способствующих снижению растворимости азота (углерод - 0,05%, кремний - 0,50%, никель - 19,0%). Следует также учитывать, что в практике выплавки сталей, легированных азотом, используют понятия композиционно-устойчивого содержания азота (максимально-возможное его содержание в твердом, без пузырей и газовой пористости металле) и коэффициента композиционной устойчивости. Последний характеризует соотношение между пределом растворимости азота в металле в стандартных условиях и композиционно-устойчивым содержанием азота. Коэффициент композиционной устойчивости азота зависит от парциального давления азота над расплавом, от химического состава металла и его фазового состава в интервале температур солидус - ликвидус (TS -TL). Композиционно-устойчивое содержание азота определяют как:

где Ку=0,78 - эмпирически определенный коэффициент композиционной устойчивости для аустенитных хромоникельмарганцевых сталей. При использовании Ку эти рассчитанные значения будут еще ниже.

Еще к одному недостатку химического состава данной сварочной проволоки можно отнести достаточно высокое содержание дорогостоящих легирующих элементов - никеля и молибдена, что приводит к значительному удорожанию сварочной проволоки.

В связи с этим задачей изобретения является получение аустенитной сварочной проволоки с высоким содержанием азота, имеющей Cr-Mn-Ni-Mo-N систему легирования.

Техническим результатом является получение немагнитного металла шва и повышение уровня механических свойств и коррозионной стойкости сварных соединений, полученных с использованием данной сварочной проволоки.

Технический результат достигается тем, что аустенитная коррозионностойкая сварочная проволока с высоким содержанием азота для сварки немагнитной высокопрочной азотистой стали, включающая углерод, кремний, марганец, хром, никель, молибден, ванадий, азот, церий, лантан, серу, фосфор, железо, содержит следующее соотношение компонентов, мас. %:

Углерод 0,04-0,08
Кремний не более 1,0
Марганец 14,0-16,0
Хром 19,0-23,0
Никель 6,0-9,0
Молибден 0,5-1,5
Ванадий 0,10-0,50
Азот 0,45-0,65
Церий 0,05-0,2
Лантан 0,03-0,1
Сера 0,005-0,010
Фосфор 0,010-0,015
Железо Остальное

Сталь также может содержать РЗМ (церий, лантан), для повышения прочностных и пластических свойств металла шва, поскольку эти РЗМ влияют на формирование макро- и микроструктуры сплава, способствуют нейтрализации отрицательного влияния вредных примесей. При этом, суммарное содержание церия и лантана не должно превышать 0,25 мас. %.

Для стали сварочной проволоки в обеспечение ее аустенитной структуры должно выполняться условие где значения никелевого Ni'экв и хромового Cr'экв эквивалентов рассчитываются по формулам:

[Ni], [Μn], [N], [C], [Cr], [Mo], [Si], [V], [Nb] - концентрация в стали никеля, марганца, азота, углерода, хрома, молибдена, кремния, ванадия, ниобия (мас. %).

Если это условие не выполняется, составы сталей попадают в область существования ферритной фазы на модифицированной диаграмме Шеффлера (рис. 1).

Для стали сварочной проволоки для обеспечения высокой коррозионной стойкости должно выполняться условие:

Высокое содержание хрома повышает растворимость азота, прочность и коррозионную стойкость сварного соединения. Содержание хрома выше 23% приведет к понижению пластичности металла шва, образованию δ-феррита и σ-фазы. Легирование металла марганцем также способствует повышению растворимости азота. Он стабилизирует аустенитную структуру по отношению к γ → α превращению и повышает стойкость к образованию горячих трещин.

Никель обеспечивает стабилизацию аустенитной структуры, повышает стойкость металла шва хрупким разрушениям, увеличивает прочность и пластичность. Введение никеля больше 9% приведет к снижению растворимости азота, пластичности металла шва и увеличению себестоимости сварочной проволоки.

Азот также является сильным аустенизатором, способствует повышению прочностных свойств и коррозионной стойкости, измельчению структуры. Повышение содержания азота в металле шва выше указанного верхнего предела не представляется технически возможным.

Легирование молибденом позволяет повысить предел текучести и сопротивление разрыву сварных соединений. Добавление молибдена выше 1,5% приведет к возникновению δ-феррита, что помешает получить немагнитный металл шва, и повысит стоимостные характеристики.

Ванадий обладает сильным упрочняющим эффектом упрочнения твердого раствора, повышает растворимость азота, увеличивает стойкость к межкристаллитной коррозии и прочность металла шва. Вместе с тем, повышение содержания ванадия выше указанного верхнего предела приведет к снижению ударной вязкости и образованию δ-феррита.

Содержание кремния в указанных пределах обеспечивает стабильность горения дуги, высокую текучесть металла при дуговой сварке и снижает образование брызг. Превышение концентрации кремния нецелесообразно, т.к. он снижает растворимость азота в стали и характеристики пластичности металла шва.

Таким образом, выбранный состав сварочной проволоки обеспечивает оптимальное сочетание легирующих элементов аустенито- и ферритообразователей, для получения аустенитной структуры металла шва, высокого уровня механических и коррозионных свойств сварного соединения. При сварке элементов конструкций из стали с высокой концентрацией азота этот состав, содержащий значительное количество хрома, марганца и молибден - элементов, повышающих растворимость азота в твердых растворах на основе железа, позволяет усвоить металлом сварного шва азот из свариваемого металла, без образования газовых пор азота и горячих трещин.

Изготовление сварочной проволоки включает в себя следующие технологические операции:

- выплавку стали с заданным химическим составом в открытой индукционной печи с добавлением азотированных ферросплавов;

- гомогенизацию литой структуры при 1200°С, 1 час, охлаждение в воду;

- прокатку с предварительным подогревом при 1100°С, 40 минут. Скорость прокатного стана - 60 об/мин. Диаметр квадратного сечения прутка после прокатки -10×10 мм ±0,1;

- ротационную ковку с предварительным подогревом при 900°С для обеспечения овализации полуфабриката. Скорость 2-3 м/мин. Диаметр заготовки - 2,4 мм ±0,1;

- волочение проволоки на промежуточные (передельные) размеры с предварительным подогревом при 500°С. Смазывающий материал - графит с дисульфидом молибдена. Начальная скорость волочения - 2 м/мин, заключительная -6 м/мин. Шаг фильеры - 0,1 мм. Диаметр проволоки - 1,2 мм ±0,1;

- контроль технологического процесса;

- механическую полировка проволоки для удаления окалины и смазывающего материала.

Проволока обладает гладкой поверхностью без трещин, расслоений, плен, закатов, раковин, забоин, окалины, ржавчины, масла и других загрязнений. На поверхности допускаются риски, царапины, местная рябизна и вмятины.

В таблице 1 приведен химический состав сварочной проволоки композиций, в которых варьируется содержание основных легирующих элементов, с учетом соблюдения условий:

- Δ=1.17*Cr'экв-Ni'экв ≤11,16;

- PREN ≥31.

Таблица 1 иллюстрирует также, что несоблюдение первого условия приводит либо к уменьшению растворимости азота, либо к попаданию состава в область существования ферритной фазы. На рисунке 1 отмечено расположение различных плавок сварочной проволоки с высоким содержанием азота на модифицированной диаграмме Шеффлера. Составы №№ 1 и 2 можно указать в числе рекомендованных, т.к. соблюдены условия получения аустенитной структуры и коррозионной стойкости.

Рекомендуемые условия хранения для сварочной проволоки: температура 17-27С, относительная влажность ≤60%. Срок годности при рекомендуемом хранении не ограничен.

Требования к эксплуатации. Температура окружающей среды: -50-+50°С; ток сварки: 60-160 А; напряжение: 10-24 В. Рабочая температура: от -70 до +500°С.

1. Сварочная проволока с высоким содержанием азота, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, азот, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит церий и лантан при следующем содержании компонентов, мас.%:

Углерод 0,04-0,08
Кремний не более 1,0
Марганец 14,0-16,0
Хром 19,0-23,0
Никель 6,0-9,0
Молибден 0,5-1,5
Ванадий 0,10-0,50
Азот 0,45-0,65
Церий 0,05-0,2
Лантан 0,03-0,1
Сера 0,005-0,010
Фосфор 0,010-0,015
Железо Остальное

2. Сварочная проволока по п. 1, отличающаяся тем, что суммарное соотношение церия и лантана не превышает 0,25 мас. %.

3. Сварочная проволока по п. 1, отличающаяся тем, что она имеет аустенитную структуру после гомогенизирующего отжига, прокатки, ротационной ковки и волочения, причем для обеспечения ее аустенитной структуры выполняется условие: Δ=1,17·Cr'экв-Ni'экв≤11,16, где значения никелевого Ni'экв и хромового Cr'экв эквивалентов рассчитаны по формулам:

Ni'экв=[Ni]+0,1[Mn]-0,01[Mn]2+18[N]+30[С];

Cr'экв=[Cr]+1,5[Мо]+0,48[Si]+2,3[V];

где [Ni], [Mn], [N], [С], [Cr], [Mo], [Si], [V] - концентрация в стали никеля, марганца, азота, углерода, хрома, молибдена, кремния и ванадия (мас. %).

4. Сварочная проволока по п. 1, отличающаяся тем, что для обеспечения высокой коррозионной стойкости выполняется условие: %Cr+3,3·%Mo+16·%N≥31.



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к высокопрочному толстому стальному листу, используемому в качестве материала для строительства трубопроводов. Лист имеет состав, содержащий следующие компоненты, в мас.%: 0,03-0,055 C, 0,1-0,35 Si, 1,7-2,2 Mn, 0,01-0,04 Al, 0,005-0,025 Ti, 0,008 или меньше N, 0,08-0,12 Nb, 0,2-0,45 Cr, 0,2-0,35 Ni, 0,05-0,3 Cu, 0,2-0,4 Mo, 0,0067 или меньше P, 0,002 или меньше S, 0,0005-0,004 Ca, 0,01-0,04 V, 0,0005 или меньше B, Fe и неизбежные примеси – остальное.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на широкополосных многоклетьевых станах горячекатаного рулонного проката для электросварных труб, предназначенных для эксплуатации в условиях отрицательных температур, в том числе для арктического применения.

Изобретение относится к области металлургии, а именно к высокопрочной стальной пластине, используемой для изготовления кислотостойкого трубопровода. Пластина имеет химический состав, содержащий, мас.%: C: от 0,02 до 0,08, Si: от 0,01 до 0,50, Mn: от 0,50 до 1,80, P: от 0,001 до 0,015, S: от 0,0002 до 0,0015, Al: от 0,01 до 0,08, Mo: от 0,01 до 0,50, Ca: от 0,0005 до 0,005, по меньшей мере один компонент, выбранный из группы, состоящей из Nb: от 0,005 до 0,1 и Ti: от 0,005 до 0,1, при необходимости по меньшей мере один компонент, выбранный из группы, состоящей из Cu: 0,50 или менее, Ni: 0,10 или менее, Cr: 0,50 или менее, V: от 0,005 до 0,1, Zr: от 0,0005 до 0,02, Mg: от 0,0005 до 0,02 и РЗМ: от 0,0005 до 0,02, остальное - Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к высокопрочной стальной пластине, используемой для изготовления кислотостойкого трубопровода. Пластина имеет химический состав, содержащий в мас.%: C: от 0,02 до 0,08, Si: от 0,01 до 0,50, Mn: от 0,50 до 1,80, P: от 0,001 до 0,015, S: от 0,0002 до 0,0015, Al: от 0,01 до 0,08, Mo: от 0,01 до 0,50, Ca: от 0,0005 до 0,005, по меньшей мере один компонент, выбранный из группы, состоящей из Nb: от 0,005 до 0,1 и Ti: от 0,005 до 0,1, при необходимости по меньшей мере один компонент, выбранный из группы, состоящей из Cu: 0,50 или менее, Ni: 0,10 или менее, Cr: 0,50 или менее, V: от 0,005 до 0,1, Zr: от 0,0005 до 0,02, Mg: от 0,0005 до 0,02 и РЗМ: от 0,0005 до 0,02, остальное - Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к высокопрочному рельсу, используемому на грузовых железных дорогах. Рельс содержит, в мас.%: C: от 0,75 до 1,20, Si: от 0,10 до 2,00, Mn: от 0,10 до 2,00, Cr: от 0,10 до 1,20, V: от 0,010 до 0,200, N: от 0,0030 до 0,0200, P ≤ 0,0250, S ≤ 0,0250, Mo: от 0 до 0,50, Co: от 0 до 1,00, B: от 0 до 0,0050, Cu: от 0 до 1,00, Ni: от 0 до 1,00, Nb: от 0 до 0,0500, Ti: от 0 до 0,0500, Mg: от 0 до 0,0200, Ca: от 0 до 0,0200, РЗМ: от 0 до 0,0500, Zr: от 0 до 0,0200, Al: от 0 до 1,00, остальное - железо и примеси.
Изобретение относится к металлургии, в частности к технологии производства холоднокатаной полосы, предназначенной для изготовления деталей автомобиля методом штамповки. Способ производства холоднокатаной полосы из высокопрочной особонизкоуглеродистой стали включает выплавку стали, разливку на слябы, горячую прокатку, смотку, травление, холодную прокатку, рекристаллизационный отжиг и дрессировку полос.

Изобретение относится к области металлургии, а именно к стали для ковки механических деталей транспортного средства или двигателя. Сталь содержит следующие элементы, в мас.%: 0,15≤С≤0,22, 1,6≤Mn≤2,2, 0,6≤Si≤1, 1≤Сr≤1,5, 0,01≤Ni≤1, 0≤S≤0,06, 0≤P≤0,02, 0≤N≤0,013, при необходимости по меньшей мере один элемент, выбранный из группы: 0≤Al≤0,06, 0,03≤Mo≤0,1, 0≤Сu≤0,5, 0,01≤Nb≤0,15, 0,01≤Ti≤0,03, 0≤V≤0,08 и 0,0015≤B≤0,004, остальное - железо и неизбежные примеси.
Изобретение относится к области металлургии, а именно к технологии производства холоднокатаной полосы, используемой для изготовления изделий с высокими требованиями к жаропрочности. Выплавляют сталь следующего химического состава, мас.%: углерод 0,05-0,12, кремний 0,12-0,42, марганец 0,70-1,50, сера не более 0,30, фосфор не более 0,30, хром 2,5-3,8, никель 0,7-1,5, медь не более 0,30, молибден 0,1-0,5, железо и неизбежные примеси остальное.

Изобретение относится к области металлургии, а именно к технологии производства холоднокатаной полосы, предназначенной для изготовления деталей автомобиля методом штамповки. Выплавляют сталь, содержащую в мас.%: углерод 0,001-0,006, кремний не более 0,3, марганец 0,3-1,6, фосфор не более 0,1, алюминий не более 0,1, титан 0,02-0,12, ниобий не более 0,02, сера не более 0,012, азот не более 0,012, хром не более 0,01, никель не более 0,07, медь не более 0,01, железо и неизбежные примеси остальное.
Изобретение относится к области металлургии, а именно к получению заготовок из низкоуглеродистой мартенситной стали, содержащей 0,12-0,27 мас.% углерода. Заготовку выплавляют из стали, в состав компонентов которой включены 0,1-0,5 мас.% кремния, 1,8-2,6 мас.% марганца, 2,1-2,8 мас.% хрома, 1,0-1,6 мас.% никеля, до 0,15 мас.% ванадия и до 0,15 мас.% ниобия.

Изобретение относится к созданию многокомпонентной проволоки, предназначенной для проволочно-дугового аддитивного производства, и может быть использовано для получения послойной наплавкой высокоэнтропийного сплава состава AlCoCrFeNi. Многокомпонентная проволока содержит алюминиевую жилу круглого сечения и две жилы круглого сечения диаметром не более 0,4 мм, одна из которых представляет собой хромоникелевую проволоку Х20Н80, а другая - проволоку из прецизионного сплава 29НК.
Наверх