Способ переработки отработанных литиево-ионных источников тока

Изобретение относится к способу переработки отработанных литиево-ионных источников тока. Способ включает сбор и сортировку источников тока, их разрядку, шредирование и измельчение, просеивание, выщелачивание, экстракцию и извлечение лития, электрохимическое извлечение металлов анода источника тока. Причем на стадии выщелачивания переводят в раствор марганец, никель, кобальт и литий совместно. Для этого стадию выщелачивания проводят с использованием раствора серной кислоты концентрацией от 1,5 до 2 М и перекиси водорода концентрацией от 6 до 15% масс. при непрерывном перемешивании с использованием отношения твердой и жидкой фаз 1:10. Техническим результатом является значительное ускорение процесса переработки отработанных литиево-ионных источников тока, снижение взрывоопасности и повышение пожарной безопасности, а также увеличение извлечения ценного металлического сырья. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области переработки и возвращения в производство продуктов, оказывающих вредное воздействие на окружающую среду при их утилизации.

В настоящее время батареи, называемые ионно-литиевыми батареями и батареями с полимерным электролитом, являются основными источниками тока в области электрохимических генераторов портативных устройств (смартфоны, ноутбуки и т.п.). Однако, несмотря на многочисленные преимущества, связанные с эксплуатационными характеристиками, литиевые системы продолжают оставаться крупным источником продуктов, оказывающих крайне негативное воздействие на окружающую среду.

Известен патент США № 782013, в котором описан способ обработки всех типов литиевых анодных элементов и батарей с помощью гидрометаллургического процесса при комнатной температуре. Описанный способ извлечения включает:

- сухое измельчение при комнатной температуре в инертной атмосфере;

- обработку магнитной сепарацией и денсиметрическим столом с последующим водным гидролизом с целью извлечения, по меньшей мере, лития в форме карбоната или литиофосфата, анион указанной соли и концентрат, содержащий, по меньшей мере, один металл указанного катода.

К недостаткам известного способа относятся повышенная взрывоопасность и пожароопасность процесса обработки источников тока, а также недостаточная степень извлечения лития и металлов катода.

Задача, на решение которой направлен заявляемый способ, является исключение возможности возникновения нештатных ситуаций (взрыв перерабатываемого сырья, пожар), а также увеличение извлечения ценного металлического сырья при переработке.

Поставленная задача решается путём применения способа переработки отработанных литиево-ионных источников тока, который включает несколько стадий, а именно сортировку источников тока, их разрядку, шредирование и измельчение, просеивание, выщелачивание, экстракцию и извлечение лития, электрохимическое извлечение металлов анода источника тока. При этом на стадии выщелачивания переводят в раствор марганец, никель, кобальт и литий совместно, для чего стадию выщелачивания проводят с использованием раствора серной кислоты концентрацией от 1,5М до 2М и перекиси водорода концентрацией от 6 до 15% масс. при непрерывном перемешивании с использованием отношения твердой и жидкой фаз 1:10.

При этом разрядка источников тока может проводиться путём их выдержки в растворе хлорида натрия с концентрацией 30-60 г/л в течении 10-15 дней, а шредирование и измельчение разряженных источников тока в герметичной камере с избыточным давлением не ниже 10 мм рт. ст. в атмосфере углекислого газа. Предварительная разрядка источников тока перед стадией измельчения указанным методом и измельчение в герметичной камере в атмосфере углекислого газа при избыточном в ней давлении минимизирует попадание в неё кислорода из атмосферы, исключает возникновение взрывов и пожаров при проведении указанной стадии.

При этом разрядка источников тока может проводиться путём их погружения в жидкий азот при температуре -196°С непосредственно перед стадией шредирования и измельчения, а шредирование и измельчение разряженных источников тока в герметичной камере с избыточным давлением не ниже 10 мм рт. ст. в атмосфере азота. Предварительная разрядка источников тока перед стадией измельчения указанным методом и измельчение в герметичной камере в атмосфере азота при избыточном в ней давлении исключает попадание в неё кислорода из атмосферы, а, следовательно, исключается вероятность возникновения взрывов и пожаров на указанной стадии переработки источников тока. Дополнительным преимуществом указанного варианта является отсутствие стадии выдержки источников тока в солевом растворе, что значительно ускоряет процесс. Также жидкий азот обволакивает и покрывает измельчаемые элементы, что полностью исключает попадание на них кислорода из атмосферы.

На Фиг. 1 представлена блок-схема, иллюстрирующая порядок и стадии проведения процесса.

Осуществление способа происходит следующим образом (см. Фиг. 1). Поступающие на переработку источники тока сортируют вручную, удаляя те, которые не являются литиевыми. Отобранные источники тока подвергаются разрядке и измельчению. Разрядку источников тока можно проводить двумя вариантами.

В качестве первого варианта применяют разрядку источников тока путём их выдержки в растворе хлорида натрия с концентрацией 30-60 г/л в течении 10-15 дней. В этом варианте осуществления способа шредирование и измельчение разряженных источников тока проводят в герметичной камере с избыточным давлением не ниже 10 мм рт. ст. в атмосфере углекислого газа.

В качестве второго варианта применяют разрядку источников тока путём их погружения в жидкий азот при температуре -196°С непосредственно перед стадией шредирования и измельчения. В этом варианте осуществления способа шредирование и измельчение разряженных источников тока проводят в герметичной камере с избыточным давлением не ниже 10 мм рт. ст. в атмосфере азота.

В любом из вариантов шредирование и измельчение литиевых батареей и элементов производят в одну или несколько стадий в зависимости от вида измельчаемых отходов. Двух стадийное измельчение применяется к неразобранным батареям и элементам 18650. Предварительно измельченную измельчают до частиц с размером не более 5 мм. Измельчение можно проводить, в частности, на роторной режущей машине.

В результате измельчения и шредирования получают следующие фракции, которые и отправляют на последующие стадии переработки:

- мелкодисперсная фракция, богатая оксидами металлов и углеродом;

- магнитная фракция, состоящая из нержавеющей стали из корпусов элементов и батарей;

- немагнитная фракция с относительно высокой плотностью частиц, состоящая из цветных металлов;

- немагнитная фракция с относительно низкой плотностью частиц, состоящая из смеси бумаги и пластика.

После стадии измельчения и шредирования полученные фракции направляют на магнитный сепаратор, на котором удаляют магнитную фракцию, а остаток просеивают через набор сит, состоящих из сит с ячейками с отверстиями 1 или 2 мм. Прошедший через сито мелкий порошок передают на стадию выщелачивания. Оставшиеся на сите передают на вихретоковой сепаратор для физического разделение материалов– металлов и пластика, которые переводят в соответствующие товарные продукты.

На стадии выщелачивания осуществляют перевод в раствор совместно кобальта и лития. Выщелачивание проводят с использованием раствора серной кислоты концентрацией от 1,5М до 2М и перекиси водорода концентрацией от 6 до 15% масс. при непрерывном перемешивании с использованием отношения твердой и жидкой фаз 1:10. При этом осуществляют контроль температуры и времени процесса выщелачивания. Содержание кобальта и лития в растворе осуществляют методом атомно-абсорбционной спектроскопии. Далее осуществляют перевод кобальта в органическую фазу из водной методом жидкостно-жидкостной экстракции при соотношении фаз 1:1 и рН от 6 до 7 с использованием Cyanex 272 в качестве органического экстрагента. Литий, содержащийся в растворе в растворенном виде, переводят раствором Na2CO3 в карбонат лития, являющийся товарным продутом, выделяют и высушивают. Марганец и никель выделяют из оставшегося раствора электрохимическим методом, используя в качестве катода сталь, а в качестве анода графит или рутений-титановый сплав.

Вышеописанный способ позволяет выделить и заново ввести в производство до 95 % масс. компонентов отработанных источников тока, в том числе до 92% лития, 92% пластика, 95% железа, 90% кобальта, 85% никеля, 85% марганца.

1. Способ переработки отработанных литиево-ионных источников тока, включающий сбор и сортировку источников тока, их разрядку, шредирование и измельчение, просеивание, выщелачивание, экстракцию и извлечение лития, электрохимическое извлечение металлов анода источника тока, отличающийся тем, что на стадии выщелачивания переводят в раствор марганец, никель, кобальт и литий совместно, для чего её проводят с использованием раствора серной кислоты концентрацией от 1,5 до 2 М и перекиси водорода концентрацией от 6 до 15% масс. при непрерывном перемешивании с использованием отношения твердой и жидкой фаз 1:10.

2. Способ по п. 1, отличающийся тем, что разрядку источников тока проводят путём их выдержки в растворе хлорида натрия с концентрацией 30-60 г/л в течение 10-15 дней.

3. Способ по п. 2, отличающийся тем, что шредирование и измельчение разряженных источников тока проводят в герметичной камере с избыточным давлением не ниже 10 мм рт. ст. в атмосфере углекислого газа.

4. Способ по п. 1, отличающийся тем, что разрядку источников тока проводят путём их погружения в жидкий азот при температуре -196°С непосредственно перед стадией шредирования и измельчения.

5. Способ по п. 4, отличающийся тем, что шредирование и измельчение разряженных источников тока проводят в герметичной камере с избыточным давлением не ниже 10 мм рт. ст. в атмосфере азота.



 

Похожие патенты:

Изобретение относится к гидрометаллургии и может быть использовано при создании безотходных технологий утилизации вредных веществ и охране окружающей среды. Техническим результатом является снижение затрат на осуществление способа переработки литий ионных аккумуляторов, уменьшение вредного экологического воздействия, повышение степени извлечения лития.

Изобретение относится к области электротехники и может быть использовано при извлечении свинца из отработанных свинцовых кислотных аккумуляторов, представленных батареями, выполненными из полимерных материалов, с электродными блоками. Повышение эффективности отделения свинецсодержащих фаз от сопутствующих органических компонентов является техническим результатом изобретения.

Изобретение относится к производству литиевых батарей и может быть использовано для восстановления отработанных батарей. Способ восстановления оксидных твердых электролитов с исходной фазой включает получение батареи с оксидным твердым электролитом с первоначальным размером и первоначальными характеристиками материала; разборка батареи для получения обрабатываемой части, включающей по крайней мере один электрод и оксидный твердый электролит; удаление органического вещества из обрабатываемой части, так чтобы обрабатываемая часть по существу осталась составом неорганических веществ; разделение состава неорганических веществ для получения оксидного твердого электролита и очищение оксидного твердого электролита для получения восстановленного оксидного твердого электролита с первоначальным размером и первоначальными характеристиками материала.

Изобретение относится к способу извлечения лития из литийсодержащего материала. Способ включает в себя следующее: перемешивают литийсодержащий материал, включающий литий-ионную ячейку или батарею, либо литийсодержащее минеральное отложение в растворе кислоты с рН около 2,5 или менее для образования кислого раствора лития, при этом перемешивание осуществляют при температуре от около 10°C примерно до 100°C, а кислый раствор лития включает раствор кислоты с рН около 2,5 или менее, литий и по меньшей мере один или несколько компонентов: раствор кислоты, растворимые органические вещества, растворимые металлы и взвешенные твёрдые вещества; подают кислый раствор лития на мембрану предварительной ультрафильтрационной обработки для удержания основной массы взвешенных твёрдых веществ и проникновения фильтрованного кислого раствора лития, включающего по меньшей мере один или несколько компонентов: раствор кислоты с рН около 2,5 или менее, литий, растворимые органические вещества и растворимые металлы; подают фильтрованный кислый раствор лития на нанофильтрационную мембрану для формирования ретентата и пермеата; ретентат нанофильтрации включает растворимые органические вещества и/или растворимые металлы, а пермеат нанофильтрации образует фильтрованный раствор кислоты и лития, включающий раствор кислоты с рН около 2,5 или менее и литий; подают фильтрованный раствор кислоты с рН около 2,5 или менее и лития на мембрану обратного осмоса для формирования ретентата и пермеата, ретентат обратного осмоса включает литий, а пермеат обратного осмоса включает раствор кислоты с рН около 2,5 или менее; и извлекают соли лития из ретентата обратного осмоса с образованием извлечённого лития и, необязательно, возвращают пермеат обратного осмоса на стадию перемешивания.
Изобретение относится к области электротехники, а именно к способу восстановления утраченной емкости аккумуляторных батарей (АКБ) и продления срока их службы. Способ восстановления тяговых свинцово-кислотных АКБ включает демонтаж АКБ, вскрытие каждого элемента, устранение повреждений, очистку корпуса и положительных и отрицательных пластин элементов от шлама, сборку элементов с проверкой на герметичность опрессовкой, заправку новым электролитом и проведение контрольно-тренировочных циклов (КТЦ), при этом КТЦ проводят на специализированных зарядных/разрядных устройствах, имитирующих нагрузку по стандарту С5, по меньшей мере, из трех циклов заряда в режиме восстановления емкости и разрядов постоянным током по стандарту С5, при этом подбор восстановленных элементов осуществляют по падению напряжения под постоянной нагрузкой при условии не более 0,05 между элементами и производят сборку АКБ из подобранных элементов.

Изобретение относится к способу утилизации литийсодержащих отходов в виде батарей. Способ включает разрядку отработанных литиевых батарей с использованием разрядной установки.
Изобретение относится к способу переработки выброшенных батарей путем измельчения или дробления для извлечения повторно используемых материалов, содержащему следующие этапы: сортировку множества батарей на группы по технологии батарей; удаление батарей с кнопочными элементами из упомянутых групп; измельчение упомянутых групп батарей на куски приблизительно одной четвертью дюйма или менее для получения конечной массы частиц; удаление ферромагнитного материала из упомянутой конечной массы частиц, передачу упомянутой конечной массы частиц в процесс очистки или переплавки для извлечения повторно используемых материалов; при этом измельчение батарей первоначально проводят при температуре от 40 до 50оС с использованием циклона для удаления выделяющихся газов, после чего полученную смесь через воздухопроницаемую транспортировочную трубу подают на окончательное измельчение.
Изобретение относится к переработке электрохимических элементов и батарей. Способ разделения материалов в ломе батарей включает измельчение батареи, удаление материалов корпуса, суспендирование получаемой суспензии батареи в воде в резервуаре пенной флотации, добавление агента пенной флотации к данной суспензии, барботирование данного резервуара воздухом с образованием пены, вследствие чего гидрофобные материалы захватываются пузырьками воздуха, и позволяют захваченным материалам всплывать вверх в резервуаре и снимают захваченные материалы из резервуара.

Изобретение относится к электротехнике и может быть использовано для восстановления емкости герметичных аккумуляторных батарей, эксплуатируемых в условиях отрицательных температур окружающей среды. Снижение времени восстановления емкости и повышение срока службы батарей достигается за счет того, что в способе восстановления емкости герметичных никель-кадмиевых аккумуляторных батарей, после предварительного разряда аккумуляторной батареи до (0-0,5В) и последующем заряде до максимального значения, перед разрядом аккумуляторной батареи осуществляют измерение напряжения батареи и сравнение его с заданным значением и контролируют остаточную емкость с последующим разрядом ее на нагрузочном элементе, при этом заряд батареи осуществляют только при положительных значениях температуры, для чего аккумуляторную батарею помещают в термоизоляционный корпус, и если температура в корпусе окажется отрицательной или ниже требуемой положительной температуры, то с помощью встроенного внутрь термоизоляционного корпуса нагревательного элемента, на который подают напряжение питания, доводят температуру до требуемого положительного значения, которое контролируют с помощью термодатчика, после чего осуществляют заряд аккумуляторной батареи с амплитудой тока заряда, выбираемой в пределах (0,5-1,0) от номинального значения емкости.
Изобретение относится к области электротехники и может быть использовано для сокращения времени формирования и восстановления емкости никель-кадмиевых аккумуляторов после их длительного хранения. Согласно предложенному изобретению зарядку аккумуляторов ведут переменным асимметричным током при соотношении амплитуд разрядного и зарядного токов γ и соотношении длительностей разрядного и зарядного импульсов τ, определяемых индивидуально для каждого типа аккумуляторов, с помощью двухфакторного эксперимента в интервалах γ=1,1÷7 и τ=0,1÷0,9 соответственно, пауза между зарядным и разрядным импульсами равна длительности разрядного импульса, среднее значение переменного асимметричного тока заряда выбирают так, чтобы заряд проходил от 1 часа до 10 часов, при этом заряд производят до достижения на батареи порогового значения, контроль напряжения на батарее производят в паузе между разрядным и зарядным импульсами, частота переменного асимметричного тока может быть любая в интервале от 1 Гц до 50 кГц, разряд производят тем же током до достижения 1 В на аккумулятор.
Наверх